Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202205748, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536889

RESUMO

A powerful approach to cooperative group-transfer catalysis is demonstrated using the Co=Si bond of a cobalt silylene to provide two distinct sites for substrate activation. The orthogonal selectivity of the Co and Si centers enables efficient nitrene-group transfer to carbon monoxide by avoiding poisoning that would result from substrates competing for a single reactive site.

2.
Angew Chem Int Ed Engl ; 60(3): 1615-1619, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32991759

RESUMO

A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2 Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two-electron transformations by one-electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2 to afford a bimetallic siloxane, featuring two CoII centers, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII /CoII products are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small-molecule activation that is well-suited to 3d metals.

3.
J Org Chem ; 82(3): 1347-1355, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27957844

RESUMO

Cinchona alkaloids and their derivatives are widely used as organocatalysts in asymmetric synthesis. In particular, sulfonamide derivatives of cinchona alkaloids are highly enantioselective desymmetrization catalysts in the ring opening of a variety of cyclic anhydrides. To better understand the mechanism of catalysis, as well as to identify the basis for enantioselectivity by this catalyst, we have performed DFT calculations of this reaction with a cyclic meso anhydride. Herein, we report calculations for two reaction pathways, one concerted and one stepwise, for the production of each enantiomer of the desymmetrized product using the complete sulfonamide catalyst I. Our results are consistent with both the enantioselectivity of this transformation and the catalytic role of the quinuclidine moiety. We find that the stepwise pathway is the relevant pathway in the production of the major enantiomer. Our calculations highlight the role of differential distortion of the anhydride-methanol complex in the transition state as the factor leading to stereoselectivity.

4.
Langmuir ; 27(5): 1954-63, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21229985

RESUMO

The behavior of CO(2) and N(2), both as single components and as binary mixtures, in two cage-type silica zeolites was studied using atomistic simulations. The zeolites considered, ITQ-3 and paradigm cage-type zeolite ZK4 (the all-silica analog of LTA), were chosen so that the principles illustrated can be generalized to other adsorbent/adsorbate systems with similar topology and types of interactions. N(2) was chosen both because of the potential uses of N(2)/CO(2) separations and because it differs from CO(2) most significantly in the magnitude of its Coulombic interactions with zeolites. Despite similarities between N(2) and CO(2) diffusion in other materials, we show here that the diffusion of CO(2) within cage-type zeolites is dominated by an energy barrier to diffusion located at the entrance to the narrow channels connecting larger cages. This barrier originates in Coulombic interactions between zeolites and CO(2)'s quadrupole and results in well-defined orientations for the diffusing molecules. Furthermore, CO(2)'s favorable electrostatic interactions with the zeolite framework result in preferential binding in the windows between cages. N(2)'s behavior, in contrast, is more consistent with that of molecules previously studied. Our analysis suggests that CO(2)'s behavior might be common for adsorbates with quadrupoles that interact strongly with a material that has narrow windows between cages.


Assuntos
Dióxido de Carbono/química , Modelos Moleculares , Nitrogênio/química , Dióxido de Silício/química , Zeolitas/química , Difusão , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA