Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Am J Pathol ; 194(3): 384-401, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38159723

RESUMO

Respiratory tract virus infections cause millions of hospitalizations worldwide each year. Severe infections lead to lung damage that coincides with persistent inflammation and a lengthy repair period. Vaccination and antiviral therapy help to mitigate severe infections before or during the acute stage of disease, but there are currently limited specific treatment options available to individuals experiencing the long-term sequelae of respiratory viral infection. Herein, C57BL/6 mice were infected with influenza A/PR/8/34 as a model for severe viral lung infection and allowed to recover for 21 days. Mice were treated with rapamycin, a well-characterized mammalian target of rapamycin complex 1 (mTORC1) inhibitor, on days 12 to 20 after infection, a time period after viral clearance. Persistent inflammation following severe influenza infection in mice was primarily driven by macrophages and T cells. Uniform manifold approximation and projection analysis of flow cytometry data revealed that lung macrophages had high activation of mTORC1, an energy-sensing kinase involved in inflammatory immune cell effector functions. Rapamycin treatment reduced lung inflammation and the frequency of exudate macrophages, T cells, and B cells in the lung, while not impacting epithelial progenitor cells or adaptive immune memory. These data highlight mTORC1's role in sustaining persistent inflammation following clearance of a viral respiratory pathogen and suggest a possible intervention for post-viral chronic lung inflammation.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Camundongos , Animais , Humanos , Infecções por Orthomyxoviridae/complicações , Camundongos Endogâmicos C57BL , Pulmão , Macrófagos , Inflamação/complicações , Sirolimo/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Serina-Treonina Quinases TOR , Mamíferos
2.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G438-G459, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193195

RESUMO

The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.


Assuntos
Cálcio , Microbiota , Animais , Camundongos , Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Esôfago/metabolismo , Inflamação , Expressão Gênica
3.
Brain Behav Immun ; 117: 36-50, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182037

RESUMO

Risk factors contributing to dementia are multifactorial. Accumulating evidence suggests a role for pathogens as risk factors, but data is largely correlative with few causal relationships. Here, we demonstrate that intermittent murine cytomegalovirus (MCMV) infection of mice, alters blood brain barrier (BBB) permeability and metabolic pathways. Increased basal mitochondrial function is observed in brain microvessels cells (BMV) exposed to intermittent MCMV infection and is accompanied by elevated levels of superoxide. Further, mice score lower in cognitive assays compared to age-matched controls who were never administered MCMV. Our data show that repeated systemic infection with MCMV, increases markers of neuroinflammation, alters mitochondrial function, increases markers of oxidative stress and impacts cognition. Together, this suggests that viral burden may be a risk factor for dementia. These observations provide possible mechanistic insights through which pathogens may contribute to the progression or exacerbation of dementia.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Infecções por Citomegalovirus , Demência , Animais , Camundongos , Infecções por Citomegalovirus/complicações , Cognição
5.
Mol Ther Methods Clin Dev ; 32(3): 101286, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39070292

RESUMO

Although the last decade has seen tremendous progress in drugs that treat cystic fibrosis (CF) due to mutations that lead to protein misfolding, there are approximately 8%-10% of subjects with mutations that result in no significant CFTR protein expression demonstrating the need for gene editing or gene replacement with inhaled mRNA or vector-based approaches. A limitation for vector-based approaches is the formation of neutralizing humoral responses. Given that αCD20 has been used to manage post-transplant lymphoproliferative disease in CF subjects with lung transplants, we studied the ability of αCD20 to module both T and B cell responses in the lung to one of the most immunogenic vectors, E1-deleted adenovirus serotype 5. We found that αCD20 significantly blocked luminal antibody responses and efficiently permitted re-dosing. αCD20 had more limited impact on the T cell compartment, but reduced tissue resident memory T cell responses in bronchoalveolar lavage fluid. Taken together, these pre-clinical studies suggest that αCD20 could be re-purposed for lung gene therapy protocols to permit re-dosing.

6.
mBio ; 15(1): e0146423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117035

RESUMO

IMPORTANCE: Our study reveals the potential of precision-cut lung slices as an ex vivo platform to study the growth/survival of Pneumocystis spp. that can facilitate the development of new anti-fungal drugs.


Assuntos
Anti-Infecciosos , Pneumocystis , Pneumonia por Pneumocystis , Pulmão/microbiologia , Pneumonia por Pneumocystis/microbiologia
7.
Immunohorizons ; 8(3): 242-253, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446446

RESUMO

T cell immunity, including CD4+ and CD8+ T cell immunity, is critical to host immune responses to infection. Transcriptomic analyses of both CD4+ and CD8+ T cells of C57BL/6 mice show high expression the gene encoding embigin, Emb, which encodes a transmembrane glycoprotein. Moreover, we found that lung CD4+ Th17 tissue-resident memory T cells of C57BL/6 mice also express high levels of Emb. However, deletion of Emb in αß T cells of C57BL/6 mice revealed that Emb is dispensable for thymic T cell development, generation of lung Th17 tissue-resident memory T cells, tissue-resident memory T cell homing to the lung, experimental autoimmune encephalitis, as well as clearance of pulmonary viral or fungal infection. Thus, based on this study, embigin appears to play a minor role if any in αß T cell development or αß T cell effector functions in C57BL/6 mice.


Assuntos
Linfócitos T CD8-Positivos , Timo , Camundongos , Animais , Camundongos Endogâmicos C57BL , Diferenciação Celular , Células Th17
8.
Viruses ; 16(4)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675952

RESUMO

This study investigates the roles of T, B, and Natural Killer (NK) cells in the pathogenesis of severe COVID-19, utilizing mouse-adapted SARS-CoV-2-MA30 (MA30). To evaluate this MA30 mouse model, we characterized MA30-infected C57BL/6 mice (B6) and compared them with SARS-CoV-2-WA1 (an original SARS-CoV-2 strain) infected K18-human ACE2 (K18-hACE2) mice. We found that the infected B6 mice developed severe peribronchial inflammation and rapid severe pulmonary edema, but less lung interstitial inflammation than the infected K18-hACE2 mice. These pathological findings recapitulate some pathological changes seen in severe COVID-19 patients. Using this MA30-infected mouse model, we further demonstrate that T and/or B cells are essential in mounting an effective immune response against SARS-CoV-2. This was evident as Rag2-/- showed heightened vulnerability to infection and inhibited viral clearance. Conversely, the depletion of NK cells did not significantly alter the disease course in Rag2-/- mice, underscoring the minimal role of NK cells in the acute phase of MA30-induced disease. Together, our results indicate that T and/or B cells, but not NK cells, mitigate MA30-induced disease in mice and the infected mouse model can be used for dissecting the pathogenesis and immunology of severe COVID-19.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Células Matadoras Naturais , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Animais , Células Matadoras Naturais/imunologia , COVID-19/imunologia , COVID-19/virologia , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/deficiência , Camundongos Knockout , Humanos , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Linfócitos B/imunologia , Feminino , Linfócitos T/imunologia
9.
Cancer Immunol Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842383

RESUMO

IL-17 is required for the initiation and progression of pancreatic cancer, particularly in the context of inflammation, as previously shown by genetic and pharmacological approaches. The cellular compartment and downstream molecular mediators of IL-17-mediated pancreatic tumorigenesis have not been fully identified. We interrogated the cellular compartment required by generating transgenic animals with Interleukin 17 receptor A (IL-17RA) genetically deleted from the pancreatic epithelial compartment vs. the hematopoietic compartment via generation of IL-17RA-deficient (IL17-RA-/-) bone marrow chimeras, in the context of embryonically activated or inducible Kras. Deletion of IL-17RA from the pancreatic epithelial compartment, but not from hematopoietic, resulted in delayed premalignant lesions initiation and progression and increased CD8+ cytotoxic T cells infiltration to the tumor microenvironment. Absence of IL-17RA in the pancreatic compartment affected transcriptional profiles of epithelial cells, modulating stemness and immunological pathways. Interestingly, B7-H4, a known inhibitor of T cell activation encoded by the gene Vtcn1, was the most upregulated checkpoint molecule via IL17 early during pancreatic tumorigenesis, and its genetic deletion delayed pancreatic premalignant lesions development and reduced immunosuppression. We reveal pancreatic epithelial IL-17RA requirement for pancreatic tumorigenesis by reprogramming the immune pancreatic landscape which is partially orchestrated by regulation of B7-H4.

10.
Res Sq ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39011095

RESUMO

Type 2 and type 1 diabetes (T2D, T1D) exhibit sex differences in insulin secretion, the mechanisms of which are unknown. We examined sex differences in human pancreatic islets from 52 donors with and without T2D combining single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), hormone secretion, and bioenergetics. In nondiabetic (ND) donors, sex differences in islet cells gene accessibility and expression predominantly involved sex chromosomes. Islets from T2D donors exhibited similar sex differences in sex chromosomes differentially expressed genes (DEGs), but also exhibited sex differences in autosomal genes. Comparing ß cells from T2D vs. ND donors, gene enrichment of female ß cells showed suppression in mitochondrial respiration, while male ß cells exhibited suppressed insulin secretion. Thus, although sex differences in gene accessibility and expression of ND ß cells predominantly affect sex chromosomes, the transition to T2D reveals sex differences in autosomes highlighting mitochondrial failure in females.

11.
Commun Biol ; 7(1): 433, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594380

RESUMO

Lung tissue resident memory (TRM) cells are thought to play crucial roles in lung host defense. We have recently shown that immunization with the adjuvant LTA1 (derived from the A1 domain of E. coli heat labile toxin) admixed with OmpX from K. pneumoniae can elicit antigen specific lung Th17 TRM cells that provide serotype independent immunity to members of the Enterobacteriaceae family. However, the upstream requirements to generate these cells are unclear. Single-cell RNA-seq showed that vaccine-elicited Th17 TRM cells expressed high levels of IL-1R1, suggesting that IL-1 family members may be critical to generate these cells. Using a combination of genetic and antibody neutralization approaches, we show that Th17 TRM cells can be generated independent of caspase-1 but are compromised when IL-1α is neutralized. Moreover IL-1α could serve as a molecular adjuvant to generate lung Th17 TRM cells independent of LTA1. Taken together, these data suggest that IL-1α plays a major role in vaccine-mediated lung Th17 TRM generation.


Assuntos
Escherichia coli , Vacinas , Memória Imunológica , Imunização , Adjuvantes Imunológicos/farmacologia
12.
Cancer Cell ; 42(1): 85-100.e6, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38157865

RESUMO

Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.


Assuntos
Interleucina-17 , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Receptores de Interleucina-17/genética , Camundongos Knockout , Transdução de Sinais , Neoplasias Pancreáticas/patologia
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167322, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38942338

RESUMO

Obesity is a risk factor for developing severe COVID-19. However, the mechanism underlying obesity-accelerated COVID-19 remains unclear. Here, we report results from a study in which 2-3-month-old K18-hACE2 (K18) mice were fed a western high-fat diet (WD) or normal chow (NC) over 3 months before intranasal infection with a sublethal dose of SARS-CoV2 WA1 (a strain ancestral to the Wuhan variant). After infection, the WD-fed K18 mice lost significantly more body weight and had more severe lung inflammation than normal chow (NC)-fed mice. Bulk RNA-seq analysis of lungs and adipose tissue revealed a diverse landscape of various immune cells, inflammatory markers, and pathways upregulated in the infected WD-fed K18 mice when compared with the infected NC-fed control mice. The transcript levels of IL-6, an important marker of COVID-19 disease severity, were upregulated in the lung at 6-9 days post-infection in the WD-fed mice when compared to NC-fed mice. Transcriptome analysis of the lung and adipose tissue obtained from deceased COVID-19 patients found that the obese patients had an increase in the expression of genes and the activation of pathways associated with inflammation as compared to normal-weight patients (n = 2). The K18 mouse model and human COVID-19 patient data support a link between inflammation and an obesity-accelerated COVID-19 disease phenotype. These results also indicate that obesity-accelerated severe COVID-19 caused by SARS-CoV-2 WA1 infection in the K18 mouse model would be a suitable model for dissecting the cellular and molecular mechanisms underlying pathogenesis.


Assuntos
COVID-19 , Pulmão , Obesidade , SARS-CoV-2 , Regulação para Cima , COVID-19/genética , COVID-19/virologia , COVID-19/metabolismo , COVID-19/patologia , Animais , Obesidade/genética , Obesidade/metabolismo , Obesidade/complicações , Camundongos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Modelos Animais de Doenças , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Índice de Gravidade de Doença , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo
14.
J Allergy Clin Immunol Glob ; 3(2): 100236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590754

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a spectrum of clinical outcomes that may be complicated by severe asthma. Antiviral immunity is often compromised in patients with asthma; however, whether this is true for SARS-CoV-2 immunity and children is unknown. Objective: We aimed to evaluate SARS-CoV-2 immunity in children with asthma on the basis of infection or vaccination history and compared to respiratory syncytial viral or allergen (eg, cockroach, dust mite)-specific immunity. Methods: Fifty-three children from an urban asthma study were evaluated for medical history, lung function, and virus- or allergen-specific immunity using antibody or T-cell assays. Results: Polyclonal antibody responses to spike were observed in most children from infection and/or vaccination history. Children with atopic asthma or high allergen-specific IgE, particularly to dust mites, exhibited reduced seroconversion, antibody magnitude, and SARS-CoV-2 virus neutralization after SARS-CoV-2 infection or vaccination. TH1 responses to SARS-CoV-2 and respiratory syncytial virus correlated with antigen-respective IgG. Cockroach-specific T-cell activation as well as IL-17A and IL-21 cytokines negatively correlated with SARS-CoV-2 antibodies and effector functions, distinct from total and dust mite IgE. Allergen-specific IgE and lack of vaccination were associated with recent health care utilization. Reduced lung function (forced expiratory volume in 1 second ≤ 80%) was independently associated with (SARS-CoV-2) peptide-induced cytokines, including IL-31, whereas poor asthma control was associated with cockroach-specific cytokine responses. Conclusion: Mechanisms underpinning atopic and nonatopic asthma may complicate the development of memory to SARS-CoV-2 infection or vaccination and lead to a higher risk of repeated infection in these children.

15.
Viruses ; 16(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066335

RESUMO

The effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. In this pilot study, we exposed two pigtail macaques (PTMs) chronically infected with SIVmac239, exhibiting from very low to no CD4 T cells across all compartments, to SARS-CoV-2. We monitored the disease progression, viral replication, and evolution, and compared these outcomes with SIV-naïve PTMs infected with SARS-CoV-2. No overt signs of COVID-19 disease were observed in either animal, and the SARS-CoV-2 viral kinetics and evolution in the SIVmac239 PTMs were indistinguishable from those in the SIV-naïve PTMs in all sampled mucosal sites. However, the single-cell RNA sequencing of bronchoalveolar lavage cells revealed an infiltration of functionally inert monocytes after SARS-CoV-2 infection. Critically, neither of the SIV-infected PTMs mounted detectable anti-SARS-CoV-2 T-cell responses nor anti-SARS-CoV-2 binding or neutralizing antibodies. Thus, HIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants but may remove the ability of infected individuals to mount adaptive immune responses against SARS-CoV-2.


Assuntos
COVID-19 , Coinfecção , Modelos Animais de Doenças , SARS-CoV-2 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/imunologia , COVID-19/imunologia , COVID-19/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , SARS-CoV-2/imunologia , Coinfecção/imunologia , Coinfecção/virologia , Replicação Viral , Macaca nemestrina , Projetos Piloto , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Carga Viral , Linfócitos T CD4-Positivos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA