Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
EMBO J ; 43(8): 1388-1419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514807

RESUMO

Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.


Assuntos
Epirregulina , Neocórtex , Animais , Humanos , Camundongos , Proliferação de Células , Epirregulina/genética , Epirregulina/metabolismo , Gorilla gorilla/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Primatas/fisiologia
2.
J Steroid Biochem Mol Biol ; 189: 81-86, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825507

RESUMO

Selective androgen receptor modulators comprise compounds that bind as ligands to the androgen receptor and possess tissue-selective activities. Ideally, they show agonistic properties in anabolic target tissues, while inducing antagonistic or only weak agonistic effects in reproductive organs. Due to their myoanabolic effects, selective androgen receptor modulators are included in the list of prohibited substances and methods of the World Anti-Doping Agency. In the current investigation, the androgenic potential of RAD-140, GSK-2881078 and GLPG0492 was comparably investigated in two different in vitro bioassays. In the yeast androgen screen, the androgenic effects were lower than in the reporter gene assay in prostate carcinoma cells (e.g. for GSK-2881078, the EC50 values were 4.44 × 10-6M in the yeast screen and 3.99 × 10-9M in the prostate cells respectively). For future investigations, it is of importance whether the yeast androgen screen, which has been proven to detect androgenic compounds in urine, can detect an abuse of the selective androgen receptor modulators. Molecular modeling of the binding to the androgen receptor ligand binding domain suggests slight differences in the binding modes of RAD-140, GSK-2881078 and GLPG0492. In conclusion, androgenic activity of the three non-steroidal compounds in the two different in vitro test systems confirmed the results of the in silico modeling of the androgen receptor binding.


Assuntos
Hidantoínas/farmacologia , Indóis/farmacologia , Nitrilas/farmacologia , Oxidiazóis/farmacologia , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacologia , Androgênios/farmacologia , Linhagem Celular Tumoral , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA