Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 39(21): 4162-4178, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30862664

RESUMO

Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the κ opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative real-time-PCR, florescence in situ hybridization, Western blotting and GTPgS autoradiography an upregulation of expression and the function of κ opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared with surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward-related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.SIGNIFICANCE STATEMENT We show that KORs are sufficient to drive the tonic-aversive component of chronic pain; the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high comorbidity with chronic pain) and substance abuse. Indeed, coexisting psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).


Assuntos
Dor Crônica/metabolismo , Dor Crônica/psicologia , Emoções/fisiologia , Percepção da Dor/fisiologia , Receptores Opioides kappa/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Long-Evans
2.
Neurobiol Dis ; 143: 105017, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32679312

RESUMO

BACKGROUND: Dopamine receptors interact with other receptors to form heterooligomers. One such complex, the D1-D2 heteromer, demonstrated in cultured striatal neurons and rat striatum has been linked to drug addiction, Parkinson's disease, schizophrenia, depression and anhedonia. METHODS: D1-D2 heteromer expression was evaluated using in situ proximity ligation assay, in parallel with cellular colocalization of D1 and D2 mRNA using in situ hybridization in 19 different key rat brain regions. Expression in higher species and changes in rat striatum after repeated cocaine administration were evaluated. RESULTS: Differences in D1-D2 heteromer expression in striatal subregions are documented in higher species with nonhuman primate and human demonstrating higher density of heteromer-expressing neurons compared to rodents. All species had higher density of D1-D2 neurons in nucleus accumbens compared to dorsal striatum. Multiple other brain regions are identified where D1-D2 heteromer is expressed, prominently in cerebral cortical subregions including piriform, medial prefrontal, orbitofrontal and others; subcortical regions such as claustrum, amygdala and lateral habenula. Three categories of regions are identified: D1-D2 heteromer expressed despite little to no observed D1/D2 mRNA colocalization, likely representing heteromer on neuronal projections from other brain regions; D1-D2 heteromer originating locally with the density of neurons expressing heteromer matching neurons with colocalized D1/D2 mRNA; regions with both a local origin and targeted inputs projecting from other regions. Repeated cocaine administration significantly increased density of neurons expressing D1-D2 heteromer and D1/D2 mRNA colocalization in rat striatum, with changes in both direct and indirect pathway neurons. CONCLUSION: The dopamine D1-D2 heteromer is expressed in key brain cortical and subcortical regions of all species examined. Species differences in striatum revealed greater abundance in human>nonhuman-primate>rat>mouse, suggesting an evolutionary biologic role for the D1-D2 heteromer in higher CNS function. Its upregulation in rat striatum following cocaine points to regulatory significance with possible relevance for clinical disorders such as drug addiction. The dopamine D1-D2 receptor heteromer may represent a potential target for neuropsychiatric and neurodegenerative disorders, given its distribution in highly relevant brain regions.


Assuntos
Cocaína/farmacologia , Corpo Estriado/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Neurônios/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Corpo Estriado/efeitos dos fármacos , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Regulação para Cima
3.
Nat Commun ; 15(1): 6264, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048565

RESUMO

Opioid withdrawal is a liability of chronic opioid use and misuse, impacting people who use prescription or illicit opioids. Hyperactive autonomic output underlies many of the aversive withdrawal symptoms that make it difficult to discontinue chronic opioid use. The locus coeruleus (LC) is an important autonomic centre within the brain with a poorly defined role in opioid withdrawal. We show here that pannexin-1 (Panx1) channels expressed on microglia critically modulate LC activity during opioid withdrawal. Within the LC, we found that spinally projecting tyrosine hydroxylase (TH)-positive neurons (LCspinal) are hyperexcitable during morphine withdrawal, elevating cerebrospinal fluid (CSF) levels of norepinephrine. Pharmacological and chemogenetic silencing of LCspinal neurons or genetic ablation of Panx1 in microglia blunted CSF NE release, reduced LC neuron hyperexcitability, and concomitantly decreased opioid withdrawal behaviours in mice. Using probenecid as an initial lead compound, we designed a compound (EG-2184) with greater potency in blocking Panx1. Treatment with EG-2184 significantly reduced both the physical signs and conditioned place aversion caused by opioid withdrawal in mice, as well as suppressed cue-induced reinstatement of opioid seeking in rats. Together, these findings demonstrate that microglial Panx1 channels modulate LC noradrenergic circuitry during opioid withdrawal and reinstatement. Blocking Panx1 to dampen LC hyperexcitability may therefore provide a therapeutic strategy for alleviating the physical and aversive components of opioid withdrawal.


Assuntos
Conexinas , Locus Cerúleo , Proteínas do Tecido Nervoso , Probenecid , Medula Espinal , Síndrome de Abstinência a Substâncias , Animais , Locus Cerúleo/metabolismo , Locus Cerúleo/efeitos dos fármacos , Conexinas/metabolismo , Conexinas/genética , Conexinas/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Camundongos , Masculino , Ratos , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Probenecid/farmacologia , Morfina/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Analgésicos Opioides/farmacologia , Norepinefrina/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA