Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 572(7768): 254-259, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316209

RESUMO

Patients with acute myeloid leukaemia (AML) often achieve remission after therapy, but subsequently die of relapse1 that is driven by chemotherapy-resistant leukaemic stem cells (LSCs)2,3. LSCs are defined by their capacity to initiate leukaemia in immunocompromised mice4. However, this precludes analyses of their interaction with lymphocytes as components of anti-tumour immunity5, which LSCs must escape to induce cancer. Here we demonstrate that stemness and immune evasion are closely intertwined in AML. Using xenografts of human AML as well as syngeneic mouse models of leukaemia, we show that ligands of the danger detector NKG2D-a critical mediator of anti-tumour immunity by cytotoxic lymphocytes, such as NK cells6-9-are generally expressed on bulk AML cells but not on LSCs. AML cells with LSC properties can be isolated by their lack of expression of NKG2D ligands (NKG2DLs) in both CD34-expressing and non-CD34-expressing cases of AML. AML cells that express NKG2DLs are cleared by NK cells, whereas NKG2DL-negative leukaemic cells isolated from the same individual escape cell killing by NK cells. These NKG2DL-negative AML cells show an immature morphology, display molecular and functional stemness characteristics, and can initiate serially re-transplantable leukaemia and survive chemotherapy in patient-derived xenotransplant models. Mechanistically, poly-ADP-ribose polymerase 1 (PARP1) represses expression of NKG2DLs. Genetic or pharmacologic inhibition of PARP1 induces NKG2DLs on the LSC surface but not on healthy or pre-leukaemic cells. Treatment with PARP1 inhibitors, followed by transfer of polyclonal NK cells, suppresses leukaemogenesis in patient-derived xenotransplant models. In summary, our data link the LSC concept to immune escape and provide a strong rationale for targeting therapy-resistant LSCs by PARP1 inhibition, which renders them amenable to control by NK cells in vivo.


Assuntos
Evasão da Resposta Imune , Leucemia Mieloide Aguda/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Evasão Tumoral , Animais , Antígenos CD34/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Ligantes , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Clin Immunol ; 44(3): 63, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363399

RESUMO

Inflammatory bowel disease (IBD) occurring following allogeneic stem cell transplantation (aSCT) is a very rare condition. The underlying pathogenesis needs to be better defined. There is currently no systematic effort to exclude loss- or gain-of-function mutations in immune-related genes in stem cell donors. This is despite the fact that more than 100 inborn errors of immunity may cause or contribute to IBD. We have molecularly characterized a patient who developed fulminant inflammatory bowel disease following aSCT with stable 100% donor-derived hematopoiesis. A pathogenic c.A291G; p.I97M HAVCR2 mutation encoding the immune checkpoint protein TIM-3 was identified in the patient's blood-derived DNA, while being absent in DNA derived from the skin. TIM-3 expression was much decreased in the patient's serum, and in vitro-activated patient-derived T cells expressed reduced TIM-3 levels. In contrast, T cell-intrinsic CD25 expression and production of inflammatory cytokines were preserved. TIM-3 expression was barely detectable in the immune cells of the patient's intestinal mucosa, while being detected unambiguously in the inflamed and non-inflamed colon from unrelated individuals. In conclusion, we report the first case of acquired, "transplanted" insufficiency of the regulatory TIM-3 checkpoint linked to post-aSCT IBD.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Doenças Inflamatórias Intestinais , Transplante de Células-Tronco , Humanos , Citocinas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/etiologia , Mucosa Intestinal , Transplante de Células-Tronco/efeitos adversos
4.
J Allergy Clin Immunol ; 152(4): 1019-1024, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423405

RESUMO

BACKGROUND: Systemic mastocytosis is characterized by expansion of clonal mast cells in various tissues. Several biomarkers with diagnostic and therapeutic potential have recently been characterized in mastocytosis, such as the serum marker tryptase and the immune checkpoint molecule PD-L1. OBJECTIVE: We aimed to investigate whether serum levels of other checkpoint molecules are altered in systemic mastocytosis and whether these proteins are expressed in mastocytosis infiltrates in the bone marrow. METHODS: Levels of different checkpoint molecules were analyzed in serum of patients with different categories of systemic mastocytosis and healthy controls and correlated to disease severity. Bone marrow biopsies from patients with systemic mastocytosis were stained to confirm expression. RESULTS: Serum levels of TIM-3 and galectin-9 were increased in systemic mastocytosis, particularly in advanced subtypes, compared with healthy controls. TIM-3 and galectin-9 levels were also found to correlate with other biomarkers of systemic mastocytosis, such as serum tryptase and KIT D816V variant allele frequency in the peripheral blood. Moreover, we observed expression of TIM-3 and galectin-9 in mastocytosis infiltrates in bone marrow. CONCLUSIONS: Together, our results demonstrate for the first time that serum levels of TIM-3 and galectin-9 are increased in advanced systemic mastocytosis. Moreover, TIM-3 and galectin-9 are expressed in bone marrow infiltrates in mastocytosis. These findings provide a rationale for exploring TIM-3 and galectin-9 as diagnostic markers and eventually therapeutic targets in systemic mastocytosis, particularly in advanced forms.

5.
Blood ; 137(10): 1340-1352, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33227812

RESUMO

Heterozygous de novo missense variants of SRP54 were recently identified in patients with congenital neutropenia (CN) who display symptoms that overlap with Shwachman-Diamond syndrome (SDS). Here, we investigate srp54 knockout zebrafish as the first in vivo model of SRP54 deficiency. srp54-/- zebrafish experience embryonic lethality and display multisystemic developmental defects along with severe neutropenia. In contrast, srp54+/- zebrafish are viable, fertile, and show only mild neutropenia. Interestingly, injection of human SRP54 messenger RNAs (mRNAs) that carry mutations observed in patients (T115A, T117Δ, and G226E) aggravated neutropenia and induced pancreatic defects in srp54+/- fish, mimicking the corresponding human clinical phenotypes. These data suggest that the various phenotypes observed in patients may be a result of mutation-specific dominant-negative effects on the functionality of the residual wild-type SRP54 protein. Overexpression of mutated SRP54 also consistently induced neutropenia in wild-type fish and impaired the granulocytic maturation of human promyelocytic HL-60 cells and healthy cord blood-derived CD34+ hematopoietic stem and progenitor cells. Mechanistically, srp54-mutant fish and human cells show impaired unconventional splicing of the transcription factor X-box binding protein 1 (Xbp1). Moreover, xbp1 morphants recapitulate phenotypes observed in srp54 deficiency and, importantly, injection of spliced, but not unspliced, xbp1 mRNA rescues neutropenia in srp54+/- zebrafish. Together, these data indicate that SRP54 is critical for the development of various tissues, with neutrophils reacting most sensitively to the loss of SRP54. The heterogenic phenotypes observed in patients that range from mild CN to SDS-like disease may be the result of different dominant-negative effects of mutated SRP54 proteins on downstream XBP1 splicing, which represents a potential therapeutic target.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Neutropenia/congênito , Partícula de Reconhecimento de Sinal/genética , Proteína 1 de Ligação a X-Box/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células HL-60 , Humanos , Modelos Moleculares , Mutação , Neutropenia/genética , Splicing de RNA , RNA Mensageiro/genética
6.
Blood ; 138(10): 871-884, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33876201

RESUMO

Despite the development of novel targeted drugs, the molecular heterogeneity of diffuse large B-cell lymphoma (DLBCL) still poses a substantial therapeutic challenge. DLBCL can be classified into at least 2 major subtypes (germinal center B cell [GCB]-like and activated B cell [ABC]-like DLBCL), each characterized by specific gene expression profiles and mutation patterns. Here we demonstrate a broad antitumor effect of dimethyl fumarate (DMF) on both DLBCL subtypes, which is mediated by the induction of ferroptosis, a form of cell death driven by the peroxidation of phospholipids. As a result of the high expression of arachidonate 5-lipoxygenase in concert with low glutathione and glutathione peroxidase 4 levels, DMF induces lipid peroxidation and thus ferroptosis, particularly in GCB DLBCL. In ABC DLBCL cells, which are addicted to NF-κB and STAT3 survival signaling, DMF treatment efficiently inhibits the activity of the IKK complex and Janus kinases. Interestingly, the BCL-2-specific BH3 mimetic ABT-199 and an inhibitor of ferroptosis suppressor protein 1 synergize with DMF in inducing cell death in DLBCL. Collectively, our findings identify the clinically approved drug DMF as a promising novel therapeutic option in the treatment of both GCB and ABC DLBCLs.


Assuntos
Fumarato de Dimetilo/farmacologia , Ferroptose/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/metabolismo , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , NF-kappa B/genética , Proteínas de Neoplasias/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
7.
EMBO J ; 35(21): 2315-2331, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27638855

RESUMO

During development, hematopoietic stem cells (HSCs) emerge from aortic endothelial cells (ECs) through an intermediate stage called hemogenic endothelium by a process known as endothelial-to-hematopoietic transition (EHT). While Notch signaling, including its upstream regulator Vegf, is known to regulate this process, the precise molecular control and temporal specificity of Notch activity remain unclear. Here, we identify the zebrafish transcriptional regulator evi1 as critically required for Notch-mediated EHT In vivo live imaging studies indicate that evi1 suppression impairs EC progression to hematopoietic fate and therefore HSC emergence. evi1 is expressed in ECs and induces these effects cell autonomously by activating Notch via pAKT Global or endothelial-specific induction of notch, vegf, or pAKT can restore endothelial Notch and HSC formations in evi1 morphants. Significantly, evi1 overexpression induces Notch independently of Vegf and rescues HSC numbers in embryos treated with a Vegf inhibitor. In sum, our results unravel evi1-pAKT as a novel molecular pathway that, in conjunction with the shh-vegf axis, is essential for activation of Notch signaling in VDA endothelial cells and their subsequent conversion to HSCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proto-Oncogenes/fisiologia , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Aorta/metabolismo , Proteínas de Ligação a DNA/genética , Diaminas/farmacologia , Embrião não Mamífero , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proto-Oncogenes/genética , Receptores Notch/metabolismo , Tiazóis/farmacologia , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Haematologica ; 102(5): 854-864, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28183848

RESUMO

Repopulation of immunodeficient mice remains the primary method for functional assessment of human acute myeloid leukemia. Published data report engraftment in ~40-66% of cases, mostly of intermediate- or poor-risk subtypes. Here we report that extending follow-up beyond the standard analysis endpoints of 10 to 16 weeks after transplantation permitted leukemic engraftment from nearly every case of xenotransplanted acute myeloid leukemia (18/19, ~95%). Xenogeneic leukemic cells showed conserved immune pheno-types and genetic signatures when compared to corresponding pre-transplant cells and, furthermore, were able to induce leukemia in re-transplantation assays. Importantly, bone marrow biopsies taken at standardized time points failed to detect leukemic cells in 11/18 of cases that later showed robust engraftment (61%, termed "long-latency engrafters"), indicating that leukemic cells can persist over months at undetectable levels without losing disease-initiating properties. Cells from favorable-risk leukemia subtypes required longer to become detectable in NOD/SCID/IL2Rγnull mice (27.5±9.4 weeks) than did cells from intermediate-risk (21.9±9.4 weeks, P<0.01) or adverse-risk (17±7.6 weeks; P<0.0001) subtypes, explaining why the engraftment of the first was missed with previous protocols. Mechanistically, leukemic cells engrafting after a prolonged latency showed inferior homing to the bone marrow. Finally, we applied our model to favorable-risk acute myeloid leukemia with inv(16); here, we showed that CD34+ (but not CD34-) blasts induced robust, long-latency engraftment and expressed enhanced levels of stem cell genes. In conclusion, we provide a model that allows in vivo mouse studies with a wide range of molecular subtypes of acute myeloid leukemia subtypes which were previously considered not able to engraft, thus enabling novel insights into leukemogenesis.


Assuntos
Modelos Animais de Doenças , Sobrevivência de Enxerto/genética , Leucemia Mieloide/genética , Transplante de Neoplasias/métodos , Doença Aguda , Animais , Antígenos CD34/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Leucêmica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fatores de Tempo , Transplante Heterólogo
9.
Int J Cancer ; 139(10): 2359-69, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27434411

RESUMO

Squamous cell carcinoma of the head and neck (HNSCC) is the tenth most common tumor entity in men worldwide. Nevertheless therapeutic options are mostly limited to surgery and radio-chemotherapy resulting in 5-year survival rates of around 50%. Therefore new therapeutic options are urgently needed. During the last years, targeting of receptor tyrosine kinases has emerged as a promising strategy that can complement standard therapeutical approaches. Here, we aimed at investigating if the receptor tyrosine kinase DDR2 is a targetable structure in HNSCC. DDR2 expression was assessed on a large HNSCC cohort (554 patients) including primary tumors, lymph node metastases and recurrences and normal mucosa as control. Subsequently, DDR2 was stably overexpressed in two different cell lines (FaDu and HSC-3) using lentiviral technology. Different tumorigenic properties such as proliferation, migration, invasion, adhesion and anchorage independent growth were assessed with and without dasatinib treatment using in-vitro cell models and in-vivo zebrafish xenografts. DDR2 was overexpressed in all tumor tissues when compared to normal mucosa. DDR2 overexpression led to increased migration, invasion, adhesion and anchorage independent growth whereas proliferation remained unaltered. Upon dasatinib treatment migration, invasion and adhesion could be inhibited in-vitro and in-vivo whereas proliferation was unchanged. Our data suggest treatment with dasatinib as a promising new therapeutic option for patients suffering from DDR2 overexpressing HNSCC. Since dasatinib is already FDA-approved we propose to test this drug in clinical trials so that patients could directly benefit from this new treatment option.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/enzimologia , Dasatinibe/farmacologia , Receptor com Domínio Discoidina 2/biossíntese , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/enzimologia , Animais , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
10.
Dev Biol ; 354(1): 134-42, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21466798

RESUMO

Cdx transcription factors regulate embryonic positional identities and have crucial roles in anteroposterior patterning (AP) processes of all three germ layers. Previously we have shown that the zebrafish homologues cdx1a and cdx4 redundantly regulate posterior mesodermal derivatives inducing embryonic blood cell fate specification and patterning of the embryonic kidney. Here we hypothesize that cdx factors restrict formation of anterior mesodermal derivatives such as cardiac cells by imposing posterior identity to developing mesodermal cells. We show that ectopic expression of Cdx1 or Cdx4 applied during the brief window of mesoderm patterning in differentiating murine embryonic stem cell (ESC) strongly suppresses cardiac development as assayed by expression of cardiac genes and formation of embryoid bodies (EB) containing "beating" cell clusters. Conversely, in loss-of-function studies performed in cdx-deficient zebrafish embryos, we observed a dose-dependent expansion of tbx5a(+) anterior-lateral plate mesoderm giving rise to cardiac progenitors. However, further cardiac development of these mesodermal cells required additional suppression of the retinoic acid (RA) pathway, possibly due to differential activity of inhibitory RA signals in cdx mutants. Together, our data suggest that cdx proteins affect cardiogenesis by regulating the formation of cardiogenic mesoderm and together with the RA pathway control the early development of cardiac precursor cells.


Assuntos
Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/genética , Miócitos Cardíacos/metabolismo , Tretinoína/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Masculino , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Mutação , Miócitos Cardíacos/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteínas com Domínio T/genética , Fatores de Transcrição , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
Commun Biol ; 5(1): 373, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440675

RESUMO

Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fator de Transcrição GATA3/genética , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-mdm2/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
12.
Cell Rep ; 40(7): 111181, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977490

RESUMO

The molecular repertoire promoting cancer cell plasticity is not fully elucidated. Here, we propose that glycosphingolipids (GSLs), specifically the globo and ganglio series, correlate and promote the transition between epithelial and mesenchymal cells. The epithelial character of ovarian cancer remains stable throughout disease progression, and spatial glycosphingolipidomics reveals elevated globosides in the tumor compartment compared with the ganglioside-rich stroma. CRISPR-Cas9 knockin mediated truncation of endogenous E-cadherin induces epithelial-to-mesenchymal transition (EMT) and decreases globosides. The transcriptomics analysis identifies the ganglioside-synthesizing enzyme ST8SIA1 to be consistently elevated in mesenchymal-like samples, predicting poor outcome. Subsequent deletion of ST8SIA1 induces epithelial cell features through mTORS2448 phosphorylation, whereas loss of globosides in ΔA4GALT cells, resulting in EMT, is accompanied by increased ERKY202/T204 and AKTS124. The GSL composition dynamics corroborate cancer cell plasticity, and further evidence suggests that mesenchymal cells are maintained through ganglioside-dependent, calcium-mediated mechanisms.


Assuntos
Glicoesfingolipídeos , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Gangliosídeos/metabolismo , Globosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Humanos , Transdução de Sinais
13.
J Vis Exp ; (168)2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33682851

RESUMO

Within the same patient, absence of NKG2D ligands (NKG2DL) surface expression was shown to distinguish leukemic subpopulations with stem cell properties (so called leukemic stem cells, LSCs) from more differentiated counterpart leukemic cells that lack disease initiation potential although they carry similar leukemia specific genetic mutations. NKG2DL are biochemically highly diverse MHC class I-like self-molecules. Healthy cells in homeostatic conditions generally do not express NKG2DL on the cell surface. Instead, expression of these ligands is induced upon exposure to cellular stress (e.g., oncogenic transformation or infectious stimuli) to trigger elimination of damaged cells via lysis through NKG2D-receptor-expressing immune cells such as natural killer (NK) cells. Interestingly, NKG2DL surface expression is selectively suppressed in LSC subpopulations, allowing these cells to evade NKG2D-mediated immune surveillance. Here, we present a side-by-side analysis of two different flow cytometry methods that allow the investigation of NKG2DL surface expression on cancer cells i.e., a method involving pan-ligand recognition and a method involving staining with multiple antibodies against single ligands. These methods can be used to separate viable NKG2DL negative cellular subpopulations with putative cancer stem cell properties from NKG2DL positive non-LSC.


Assuntos
Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Anticorpos Antineoplásicos/metabolismo , Biotinilação , Contagem de Células , Humanos , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem , Células Tumorais Cultivadas
14.
ACS Nano ; 15(3): 4144-4154, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33630589

RESUMO

Optical imaging probes have played a major role in detecting and monitoring a variety of diseases. In particular, nonlinear optical imaging probes, such as second harmonic generating (SHG) nanoprobes, hold great promise as clinical contrast agents, as they can be imaged with little background signal and unmatched long-term photostability. As their chemical composition often includes transition metals, the use of inorganic SHG nanoprobes can raise long-term health concerns. Ideally, contrast agents for biomedical applications should be degraded in vivo without any long-term toxicological consequences to the organism. Here, we developed biodegradable harmonophores (bioharmonophores) that consist of polymer-encapsulated, self-assembling peptides that generate a strong SHG signal. When functionalized with tumor cell surface markers, these reporters can target single cancer cells with high detection sensitivity in zebrafish embryos in vivo. Thus, bioharmonophores will enable an innovative approach to cancer treatment using targeted high-resolution optical imaging for diagnostics and therapy.


Assuntos
Imagem Molecular , Peixe-Zebra , Animais , Microscopia de Fluorescência , Peptídeos
15.
Cell Stem Cell ; 28(5): 906-922.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894142

RESUMO

Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome that can evolve to acute myeloid leukemia (AML). Mutations in CSF3R and RUNX1 are frequently observed in CN patients, although how they drive the transition from CN to AML (CN/AML) is unclear. Here we establish a model of stepwise leukemogenesis in CN/AML using CRISPR-Cas9 gene editing of CN patient-derived iPSCs. We identified BAALC upregulation and resultant phosphorylation of MK2a as a key leukemogenic event. BAALC deletion or treatment with CMPD1, a selective inhibitor of MK2a phosphorylation, blocked proliferation and induced differentiation of primary CN/AML blasts and CN/AML iPSC-derived hematopoietic stem and progenitor cells (HSPCs) without affecting healthy donor or CN iPSC-derived HSPCs. Beyond detailing a useful method for future investigation of stepwise leukemogenesis, this study suggests that targeting BAALC and/or MK2a phosphorylation may prevent leukemogenic transformation or eliminate AML blasts in CN/AML and RUNX1 mutant BAALC(hi) de novo AML.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Neutropenia , Síndrome Congênita de Insuficiência da Medula Óssea , Humanos , Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas de Neoplasias/genética , Neutropenia/congênito , Neutropenia/genética , Oncogenes
16.
Cancers (Basel) ; 12(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322769

RESUMO

Patients suffering from acute myeloid leukemia (AML) show highly heterogeneous clinical outcomes. Next to variabilities in patient-specific parameters influencing treatment decisions and outcome, this is due to differences in AML biology. In fact, different genetic drivers may transform variable cells of origin and co-exist with additional genetic lesions (e.g., as observed in clonal hematopoiesis) in a variety of leukemic (sub)clones. Moreover, AML cells are hierarchically organized and contain subpopulations of more immature cells called leukemic stem cells (LSC), which on the cellular level constitute the driver of the disease and may evolve during therapy. This genetic and hierarchical complexity results in a pronounced phenotypic variability, which is observed among AML cells of different patients as well as among the leukemic blasts of individual patients, at diagnosis and during the course of the disease. Here, we review the current knowledge on the heterogeneous landscape of AML surface markers with particular focus on those identifying LSC, and discuss why identification and targeting of this important cellular subpopulation in AML remains challenging.

17.
Elife ; 92020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026975

RESUMO

The extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.


Assuntos
Colágeno/metabolismo , Integrina alfa2/metabolismo , Metástase Neoplásica/fisiopatologia , Omento/fisiopatologia , Peritônio/fisiopatologia , Animais , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Feminino , Camundongos , Peixe-Zebra
18.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32766723

RESUMO

The Nck-associated protein 1-like (NCKAP1L) gene, alternatively called hematopoietic protein 1 (HEM-1), encodes a hematopoietic lineage-specific regulator of the actin cytoskeleton. Nckap1l-deficient mice have anomalies in lymphocyte development, phagocytosis, and neutrophil migration. Here we report, for the first time, NCKAP1L deficiency cases in humans. In two unrelated patients of Middle Eastern origin, recessive mutations in NCKAP1L abolishing protein expression led to immunodeficiency, lymphoproliferation, and hyperinflammation with features of hemophagocytic lymphohistiocytosis. Immunophenotyping showed an inverted CD4/CD8 ratio with a major shift of both CD4+ and CD8+ cells toward memory compartments, in line with combined RNA-seq/proteomics analyses revealing a T cell exhaustion signature. Consistent with the core function of NCKAP1L in the reorganization of the actin cytoskeleton, patients' T cells displayed impaired early activation, immune synapse morphology, and leading edge formation. Moreover, knockdown of nckap1l in zebrafish led to defects in neutrophil migration. Hence, NCKAP1L mutations lead to broad immune dysregulation in humans, which could be classified within actinopathies.


Assuntos
Síndromes de Imunodeficiência/complicações , Inflamação/complicações , Transtornos Linfoproliferativos/complicações , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Animais , Degranulação Celular , Proliferação de Células , Criança , Citotoxicidade Imunológica , Família , Feminino , Homozigoto , Humanos , Síndromes de Imunodeficiência/imunologia , Sinapses Imunológicas/metabolismo , Lactente , Inflamação/imunologia , Inflamação/patologia , Ativação Linfocitária/imunologia , Transtornos Linfoproliferativos/imunologia , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mutação/genética , Linhagem , Fenótipo , Síndrome , Peixe-Zebra
19.
Nat Commun ; 11(1): 1659, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246016

RESUMO

Oncogenic Ras mutations occur in various leukemias. It was unclear if, besides the direct transforming effect via constant RAS/MEK/ERK signaling, an inflammation-related effect of KRAS contributes to the disease. Here, we identify a functional link between oncogenic KrasG12D and NLRP3 inflammasome activation in murine and human cells. Mice expressing active KrasG12D in the hematopoietic system developed myeloproliferation and cytopenia, which is reversed in KrasG12D mice lacking NLRP3 in the hematopoietic system. Therapeutic IL-1-receptor blockade or NLRP3-inhibition reduces myeloproliferation and improves hematopoiesis. Mechanistically, KrasG12D-RAC1 activation induces reactive oxygen species (ROS) production causing NLRP3 inflammasome-activation. In agreement with our observations in mice, patient-derived myeloid leukemia cells exhibit KRAS/RAC1/ROS/NLRP3/IL-1ß axis activity. Our findings indicate that oncogenic KRAS not only act via its canonical oncogenic driver function, but also enhances the activation of the pro-inflammatory RAC1/ROS/NLRP3/IL-1ß axis. This paves the way for a therapeutic approach based on immune modulation via NLRP3 blockade in KRAS-mutant myeloid malignancies.


Assuntos
Inflamassomos/imunologia , Transtornos Mieloproliferativos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Proliferação de Células , Expressão Gênica , Hematopoese , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leucemia Mieloide/etiologia , Leucemia Mieloide/genética , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Células Mieloides/metabolismo , Proteínas NLR/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
20.
Methods Mol Biol ; 2017: 205-217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31197779

RESUMO

The zebrafish is a powerful vertebrate model for genetic studies on embryonic development and organogenesis. In the last decades, zebrafish were furthermore increasingly used for disease modeling and investigation of cancer biology. Zebrafish are particularly used for mutagenesis and small molecule screens, as well as for live imaging assays that provide unique opportunities to monitor cell behavior, both on a single cell and whole organism level in real time. Zebrafish have been also used for in vivo investigations of human cells transplanted into embryos or adult animals; this zebrafish xenograft model can be considered as an intermediate assay between in vitro techniques and more time-consuming and expensive mammalian models.Here, we present a protocol for transplantation of healthy and malignant human hematopoietic cells into larval zebrafish; transplantation into adult zebrafish and possible advantages and limitations of the zebrafish compared to murine xenograft models are discussed.


Assuntos
Embrião não Mamífero/citologia , Células-Tronco Hematopoéticas/citologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Desenvolvimento Embrionário , Citometria de Fluxo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Transplante de Neoplasias , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA