Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 408(2): 431-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26168968

RESUMO

Laser ablation-multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) was optimized and investigated with respect to its performance for determining spatially resolved Pu isotopic signatures within radioactive fuel particle clusters. Fuel particles had been emitted from the Chernobyl nuclear power plant (ChNPP) where the 1986 accident occurred and were deposited in the surrounding soil, where weathering processes caused their transformation into radioactive clusters, so-called micro-samples. The size of the investigated micro-samples, which showed surface alpha activities below 40 mBq, ranged from about 200 to 1000 µm. Direct single static point ablations allowed to identify variations of Pu isotopic signatures not only between distinct fuel particle clusters but also within individual clusters. The resolution was limited to 100 to 120 µm as a result of the applied laser ablation spot sizes and the resolving power of the nuclear track radiography methodology that was applied for particle pre-selection. The determined (242)Pu/(239)Pu and (240)Pu/(239)Pu isotope ratios showed a variation from low to high Pu isotope ratios, ranging from 0.007(2) to 0.047(8) for (242)Pu/(239)Pu and from 0.183(13) to 0.577(40) for (240)Pu/(239)Pu. In contrast to other studies, the applied methodology allowed for the first time to display the Pu isotopic distribution in the Chernobyl fallout, which reflects the differences in the spent fuel composition over the reactor core. The measured Pu isotopic signatures are in good agreement with the expected Pu isotopic composition distribution that is typical for a RBMK-1000 reactor, indicating that the analyzed samples are originating from the ill-fated Chernobyl reactor. The average Pu isotope ratios [(240)Pu/(239)Pu = 0.388(86), (242)Pu/(239)Pu = 0.028(11)] that were calculated from all investigated samples (n = 48) correspond well to previously published results of Pu analyses in contaminated samples from the vicinity of the Chernobyl NPP [e.g. (240)Pu/(239)Pu = 0.394(2) and (242)Pu/(239)Pu = 0.027(1); Nunnemann et al. (J Alloys Compd 271-273:45-48, 1998)].

2.
Anal Bioanal Chem ; 406(29): 7497-509, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25002336

RESUMO

The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as an ionization source for elemental analysis with an interdependent, parametric evaluation regarding sheath/cooling gas flow rate, discharge current, liquid flow rate, and the distance between the plasma and the sampling cone of the mass spectrometer. In order to better understand plasma processes (and different from previous reports), no form of collision/reaction processing was performed to remove molecular interferents. The evaluation was performed employing five test elements: cesium, silver, lead, lanthanum and nickel (10(-4) mol L(-1) in 1 mol L(-1) HNO3). The intensity of the atomic ions, levels of spectral background, the signal-to-background ratios, and the atomic-to-oxide/hydroxide adduct ratios were monitored in order to obtain fundamental understanding with regards to not only how each parameter effects the performance of this LS-APGD source, but also the inter-parametric effects. The results indicate that the discharge current and the liquid sampling flow rates are the key aspects that control the spectral composition. A compromise set of operating conditions was determined: sheath gas flow rate = 0.9 L min(-1), discharge current = 10 mA, solution flow rate = 10 µL min(-1), and sampling distance = 1 cm. Limits of detection (LODs) were calculated using the SBR-RSDB (signal-to-background ratio/relative standard deviation of the background) approach under the optimized condition. The LODs for the test elementals ranged from 15 to 400 ng mL(-1) for 10 µL injections, with absolute mass values from 0.2 to 4 ng.

3.
Appl Spectrosc ; 69(1): 58-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25506884

RESUMO

Liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma is being developed as a secondary vaporization-excitation source for the optical emission analysis of laser ablation (LA)-generated particle populations. The practicalities of this coupling are evaluated by determining the influence of source parameters on the emission response and the plasma's robustness upon LA introduction of easily ionized elements (EIEs). The influence of discharge current (45-70 mA), LA carrier gas flow rate (0.1-0.8 L min(-1)), and electrode separation distance (0.5-3.5 mm) was studied by measuring Cu emission lines after ablation of a brass sample. Best emission responses were observed for high-discharge currents, low He carrier gas flow rates, and relatively small (<1.5 mm) electrode gaps. Plasma robustness and spectroscopic matrix effects were studied by monitoring Mg(II) : Mg(I) intensity ratios and N2-derived plasma rotational temperatures after the ablation of Sr- and Ca-containing pellets. Plasma robustness investigations showed that the plasma is not appreciably affected by the particle loadings, with the microplasma being slightly more ionizing in the case of Ca introduction. In neither case did the concentration of the concomitant element change the robustness values, implying a high level of robustness. Introduction of the LA particles results in slight increases in the rotational temperatures (∼10% relative), with Ca-containing particles having a greater effect than Sr-containing particles. The observed variation of 9% in the plasma rotational temperature is in the same order of magnitude as the short-term reproducibility determined by the proposed LA-LS-APGD system. The determined rotational temperatures ranged from 1047 to 1212 K upon introducing various amounts of Ca and Sr. The relative immunity to LA particle-induced matrix effects is attributed to the relatively long residence times and high power densities (>10 W mm(-3)) of the LS-APGD microplasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA