Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Control Release ; 369: 53-62, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513728

RESUMO

Therapeutic approaches for triple-negative breast cancer (TNBC) have been continuously advancing, but inadequate control over release behavior, insufficient tumor selectivity, and limited drug availability continue to impede therapeutic outcomes in nanodrug systems. In this study, we propose a general hydrophobic antineoplastic delivery system, termed spatiotemporally-controlled hydrophobic antineoplastic delivery system (SCHADS) for enhanced TNBC treatment. The key feature of SCHADS is the formation of metastable photosensitive-antineoplastic complexes (PACs) through the self-assembly of hydrophobic drugs driven by photosensitive molecules. With the further decoration of tumor-targeting peptides coupled with the EPR effect, the PACs tend to accumulate in the tumor site tremendously, promoting drug delivery efficiency. Meanwhile, the disassembly behavior of the metastable PACs could be driven by light on demand to achieve in situ drug release, thus promoting chemotherapeutics availability. Furthermore, the abundant ROS generated by the photosensitizer could effectively kill tumor cells, ultimately realizing an effective combination of photodynamic and chemotherapeutic therapy. As an exemplary presentation, chlorin e6 has been chosen to drive the formation of PACs with the system xc- inhibitor sorafenib. Compared with pure drug treatment, the PACs with the above-described preponderances exhibit superior therapeutic effects both in vitro and in vivo and circumvent the side effects due to off-target. By manipulating the laser irradiation, the PACs-treated cell death mechanism could be dynamically regulated, thus providing the potential to remedy intrinsic/acquired resistance of tumor. Collectively, this SCHADS achieves spatio-temporal control of the drug that greatly enhances the availability of anticarcinogen and realizes synergistic antitumor effect in TNBC treatment, even ultimately being extended to the treatment of other types of tumors.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Fármacos Fotossensibilizantes , Porfirinas , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Feminino , Animais , Humanos , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Porfirinas/administração & dosagem , Porfirinas/química , Clorofilídeos , Camundongos Nus , Camundongos Endogâmicos BALB C , Fotoquimioterapia/métodos , Sorafenibe/administração & dosagem , Sorafenibe/farmacologia , Sorafenibe/química , Liberação Controlada de Fármacos
2.
Clin Chim Acta ; 561: 119810, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866175

RESUMO

This review signifies the role of circular RNAs (circRNAs) in tuberculosis (TB) and lung cancer (LC), focusing on pathogenesis, diagnosis, and treatment. CircRNAs, a newly discovered type of non-coding RNA, have emerged as key regulators of gene expression and promising biomarkers in various bodily fluids due to their stability. The current review discusses circRNA biogenesis, highlighting their RNase-R resistance due to their loop forming structure, making them effective biomarkers. It details their roles in gene regulation, including splicing, transcription control, and miRNA interactions, and their impact on cellular processes and diseases. For LC, the review identifies circRNA dysregulation affecting cell growth, motility, and survival, and their potential as therapeutic targets and biomarkers. In TB, it addresses circRNAs' influence on host anti-TB immune responses, proposing their use as early diagnostic markers. The paper also explores the interplay between TB and LC, emphasizing circRNAs as dual biosignatures, and the necessity for differential diagnosis. It concludes that no single circRNA biomarker is universally applicable for both TB and LC. Ultimately, the review highlights the pivotal role of circRNAs in TB and LC, encouraging further research in biomarker identification and therapeutic development concomitant for both diseases.


Assuntos
Neoplasias Pulmonares , RNA Circular , Tuberculose , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Tuberculose/genética , Tuberculose/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA