RESUMO
Early-life exposure to appropriate microbial flora drives expansion and development of an efficient immune system. Aberrant development results in increased likelihood of allergic disease or increased susceptibility to infection. Thus, factors affecting microbial colonization may also affect the direction of immune responses in later life. There is a need for a manipulable animal model of environmental influences on the development of microbiota and the immune system during early life. We assessed the effects of rearing under low- (farm, sow) and high-hygiene (isolator, milk formula) conditions on intestinal microbiota and immune development in neonatal piglets, because they can be removed from the mother in the first 24 h for rearing under controlled conditions and, due to placental structure, neither antibody nor antigen is transferred in utero. Microbiota in both groups was similar between 2 and 5 days. However, by 12-28 days, piglets reared on the mother had more diverse flora than siblings reared in isolators. Dendritic cells accumulated in the intestinal mucosa in both groups, but more rapidly in isolator piglets. Importantly, the minority of 2-5-day-old farm piglets whose microbiota resembled that of an older (12-28-day-old) pig also accumulated dendritic cells earlier than the other farm-reared piglets. Consistent with dendritic cell control of T cell function, the effects on T cells occurred at later time-points, and mucosal T cells from high-hygiene, isolator pigs made less interleukin (IL)-4 while systemic T cells made more IL-2. Neonatal piglets may be a valuable model for studies of the effects of interaction between microbiota and immune development on allergy.
Assuntos
Células Dendríticas/imunologia , Imunidade nas Mucosas/fisiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfócitos T/imunologia , Animais , Animais Recém-Nascidos , Hipersensibilidade/imunologia , Interleucina-2/imunologia , Interleucina-4/imunologia , Suínos , Fatores de TempoRESUMO
Background: Homeostasis of the gastrointestinal tract depends on a healthy bacterial microbiota, with alterations in microbiota composition suggested to contribute to diseases. To unravel bacterial contribution to disease pathology, a thorough understanding of the microbiota of the complete gastrointestinal tract is essential. To date, most microbial analyses have either focused on faecal samples, or on the microbial constitution of one gastrointestinal location instead of different locations within one individual. Objective: We aimed to analyse the mucosal microbiome along the entire gastrointestinal tract within the same individuals. Methods: Mucosal biopsies were taken from nine different sites in 14 individuals undergoing antegrade and subsequent retrograde double-balloon enteroscopy. The bacterial composition was characterised using 16 S rRNA sequencing with Illumina Miseq. Results: At double-balloon enteroscopy, one individual had a caecal adenocarcinoma and one individual had Peutz-Jeghers polyps. The composition of the microbiota distinctively changed along the gastrointestinal tract with larger bacterial load, diversity and abundance of Firmicutes and Bacteroidetes in the lower gastrointestinal tract than the upper gastrointestinal tract, which was predominated by Proteobacteria and Firmicutes. Conclusions: We show that gastrointestinal location is a larger determinant of mucosal microbial diversity than inter-person differences. These data provide a baseline for further studies investigating gastrointestinal microbiota-related disease.