Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1194733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720217

RESUMO

Type I interferons (IFN) are pro-inflammatory cytokines which can also exert anti-inflammatory effects via the regulation of interleukin (IL)-1 family members. Several studies showed that interferon receptor (IFNAR)-deficient mice develop severe liver damage upon treatment with artificial agonists such as acetaminophen or polyinosinic:polycytidylic acid. In order to investigate if these mechanisms also play a role in an acute viral infection, experiments with the Bunyaviridae family member Rift Valley fever virus (RVFV) were performed. Upon RVFV clone (cl)13 infection, IFNAR-deficient mice develop a severe liver injury as indicated by high activity of serum alanine aminotransferase (ALT) and histological analyses. Infected IFNAR-/- mice expressed high amounts of IL-36γ within the liver, which was not observed in infected wildtype (WT) animals. In line with this, treatment of WT mice with recombinant IL-36γ induced ALT activity. Furthermore, administration of an IL-36 receptor antagonist prior to infection prevented the formation of liver injury in IFNAR-/- mice, indicating that IL-36γ is causative for the observed liver damage. Mice deficient for adaptor molecules of certain pattern recognition receptors indicated that IL-36γ induction was dependent on mitochondrial antiviral-signaling protein and the retinoic acid-inducible gene-I-like receptor. Consequently, cell type-specific IFNAR knockouts revealed that type I IFN signaling in myeloid cells is critical in order to prevent IL-36γ expression and liver injury upon viral infection. Our data demonstrate an anti-inflammatory role of type I IFN in a model for virus-induced hepatitis by preventing the expression of the novel IL-1 family member IL-36γ.


Assuntos
Interleucina-1 , Receptor de Interferon alfa e beta , Febre do Vale de Rift , Animais , Camundongos , Fígado , Receptor de Interferon alfa e beta/genética , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/imunologia
2.
Front Immunol ; 10: 1009, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143178

RESUMO

Upon treatment with polyinosinic:polycytidylic acid [poly(I:C)], an artificial double-stranded RNA, type I interferon receptor-deficient (IFNAR-/-) mice develop severe liver injury seen by enhanced alanine aminotransferase (ALT) activity in the serum that is not observed in their wildtype (WT) counterparts. Recently, we showed that liver injury is mediated by an imbalanced expression of interleukin (IL)-1ß and its receptor antagonist (IL1-RA) in the absence of type I IFN. Here we show that despite comparable expression levels of IL-1ß in livers and spleens, spleens of poly(I:C)-treated IFNAR-/- mice show no signs of injury. In vitro analyses of hepatocytes and splenocytes revealed that poly(I:C) had no direct toxic effect on hepatocytes. Furthermore, expression levels of cytokines involved in other models for liver damage or protection such as interferon (IFN)-γ, transforming growth factor (TGF)-ß, IL-6, IL-10, IL-17, and IL-22 were comparable for both organs in WT and IFNAR-/- mice upon treatment. Moreover, flow cytometric analyses showed that the composition of different immune cells in livers and spleens were not altered upon injection of poly(I:C). Finally, we demonstrated that the receptor binding IL-1ß, IL1R1, is specifically expressed in livers but not spleens of WT and IFNAR-/- mice. Accordingly, mice double-deficient for IFNAR and IL1R1 developed no liver injury upon poly(I:C) treatment and showed ALT activities comparable to those of WT mice. Collectively, liver injury is mediated by the organ-specific expression of IL1R1 in the liver.


Assuntos
Hepatócitos/fisiologia , Fígado/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptores de Interleucina-1/metabolismo , Alanina Transaminase/sangue , Animais , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Interferon Tipo I/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Poli I-C/imunologia , Receptor de Interferon alfa e beta/genética , Receptores de Interleucina-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA