Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891887

RESUMO

With projections suggesting an increase in the global use of neonicotinoids, contemporary farmers can get caught on the "pesticide treadmill", thus creating ecosystem side effects. The aim of this study was to investigate the sorption/desorption behavior of acetamiprid, imidacloprid, and thiacloprid that controls their availability to other fate-determining processes and thus could be useful in leveling the risk these insecticides or their structural analogues pose to the environment, animals, and human health. Sorption/desorption isotherms in four soils with different organic matter (OC) content were modelled by nonlinear equilibrium models: Freundlich's, Langmuir's, and Temkin's. Sorption/desorption parameters obtained by Freundlich's model were correlated to soil physico-chemical characteristics. Even though the OC content had the dominant role in the sorption of the three insecticides, the role of its nature as well as the chemical structure of neonicotinoids cannot be discarded. Insecticides sorbed in the glassy OC phase will be poorly available unlike those in the rubbery regions. Imidacloprid will fill the sorption sites equally in the rubbery and glassy phases irrespective of its concentration. The sorption of thiacloprid at low concentrations and acetamiprid at high concentrations is controlled by hydrophilic aromatic structures, "trapping" the insecticides in the pores of the glassy phase of OC.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Tiazinas , Neonicotinoides/química , Inseticidas/química , Nitrocompostos/química , Tiazinas/química , Adsorção , Solo/química , Poluentes do Solo/química , Piridinas/química , Imidazóis/química
2.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257293

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) have been recognized as a potentially serious threat to the natural environment. NSAIDs are popular painkillers, and the main pathway for them to reach natural water is via discharge from wastewater and sewage treatment plants. In order to monitor contamination caused by these drugs, as well as their impact on the environment, a new material based on Silica Gel 60, functionalized with a dendrimeric copolymer of methylamine and 1,4-butanediol diglycidyl ether (named MA-BDDE), was prepared. Initial physicochemical characterization of the MA-BDDE material was carried out using ATR FT-IR spectroscopy as well as solid-state carbon-13 NMR spectroscopy. Its effectiveness at NSAID extraction was evaluated by the application of five select drugs in dispersive solid-phase extraction (dSPE): aspirin, ketoprofen, naproxen, diclofenac and ibuprofen. This was followed by their simultaneous determination using the HPLC-UV/Vis system demonstrating good sensitivity, with limits of detection values within the 63-265 ng mL-1 range. A comparison of the sorption capacity of each pharmaceutical with unmodified base silica showed an at least tenfold increase in capacity after modification. Initial MA-BDDE application in a quick, low-waste extraction procedure of those select NSAIDs from spiked surface water samples yielded promising results for its use as a sorbent, as recovery values of analytes adsorbed from various samples were found to exceed 72%.


Assuntos
Dendrímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Inflamatórios não Esteroides , Aspirina , Diclofenaco
3.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198175

RESUMO

Deep-subsurface hot brines in northwest Poland, extracted through boreholes reaching 1.6 and 2.6 km below the ground surface, were microbiologically investigated using culture-independent and culture-dependent methods. The high-throughput sequencing of 16S rRNA gene amplicons showed a very low diversity of bacterial communities, which were dominated by phyla Proteobacteria and Firmicutes Bacterial genera potentially involved in sulfur oxidation and nitrate reduction (Halothiobacillus and Methylobacterium) prevailed in both waters over the sulfate reducers ("Candidatus Desulforudis" and Desulfotomaculum). Only one archaeal taxon, affiliated with the order Thermoplasmatales, was detected in analyzed samples. Bacterial isolates obtained from these deep hot brines were closely related to Bacillus paralicheniformis based on the 16S rRNA sequence similarity. However, genomic and physiological analyses made for one of the isolates, Bacillus paralicheniformis strain TS6, revealed the existence of more diverse metabolic pathways than those of its moderate-temperature counterpart. These specific traits may be associated with the ecological adaptations to the extreme habitat, which suggest that some lineages of B. paralicheniformis are halothermophilic.IMPORTANCE Deep-subsurface aquifers, buried thousands of meters down the Earth's crust, belong to the most underexplored microbial habitats. Although a few studies revealed the existence of microbial life at the depths, the knowledge about the microbial life in the deep hydrosphere is still scarce due to the limited access to such environments. Studying the subsurface microbiome provides unique information on microbial diversity, community structure, and geomicrobiological processes occurring under extreme conditions of the deep subsurface. Our study shows that low-diversity microbial assemblages in subsurface hot brines were dominated by the bacteria involved in biogeochemical cycles of sulfur and nitrogen. Based on genomic and physiological analyses, we found that the Bacillus paralicheniformis isolate obtained from the brine under study differed from the mesophilic species in the presence of specific adaptations to harsh environmental conditions. We indicate that some lineages of B. paralicheniformis are halothermophilic, which was not previously reported.


Assuntos
Bacillus/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Archaea/isolamento & purificação , Bacillus/classificação , Bacillus/fisiologia , Bactérias/isolamento & purificação , Temperatura Alta , Filogenia , Polônia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Sais , Análise de Sequência de RNA , Microbiologia da Água
4.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105561

RESUMO

Solid phase extraction (SPE) is an analytical procedure developed with the purpose of separating a target analyte from a complex sample matrix prior to quantitative or qualitative determination. The purpose of such treatment is twofold: elimination of matrix constituents that could interfere with the detection process or even damage analytical equipment as well as enriching the analyte in the sample so that it is readily available for detection. Dispersive solid phase extraction (dSPE) is a recent development of the standard SPE technique that is attracting growing attention due to its remarkable simplicity, short extraction time and low requirement for solvent expenditure, accompanied by high effectiveness and wide applicability. This review aims to thoroughly survey recently conducted analytical studies focusing on methods utilizing novel, interesting nanomaterials as dSPE sorbents, as well as known materials that have been only recently successfully applied in dSPE techniques, and evaluate their performance and suitability based on comparison with previously reported analytical procedures.


Assuntos
Carbono/química , Estruturas Metalorgânicas/química , Polímeros Molecularmente Impressos/química , Nanoestruturas/química , Dióxido de Silício/química , Extração em Fase Sólida/métodos , Adsorção , Produtos Biológicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Poluentes Ambientais/isolamento & purificação , Análise de Alimentos/métodos , Hidróxidos/química , Metais Terras Raras/isolamento & purificação , Fosfoproteínas/isolamento & purificação , Porosidade , Solventes/química
5.
Microb Ecol ; 78(1): 85-101, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30341500

RESUMO

Intraterrestrial waters harbor microbial communities being extensively studied to understand microbial processes underlying subsurface ecosystem functioning. This paper provides the results of an investigation on the microbiomes of unique, subsurface sulfidic waters associated with Upper Jurassic, Cretaceous, and Miocene sediments. We used high-throughput 16S rDNA amplicon sequencing to reveal the structure of bacterial and archaeal communities in water samples differing in sulfide content (20-960 mg/dm3), salinity (1.3-3.2%), and depth of extraction (60-660 m below ground level). Composition of the bacterial communities strongly varied across the samples; however, the bacteria participating in the sulfur cycle were common in all sulfidic waters. The shallowest borehole water (60 m bgl) was dominated by sulfur-oxidizing Epsilonproteobacteria (Sulfurimonas, Sulfurovum). In the waters collected from greater depths (148-300 m bgl), the prevalence of Betaproteobacteria (Comamonadaceae) and sulfate/sulfur-reducing Deltaproteobacteria (Desulfopila, Desulfomicrobium, MSBL7) was observed. Sulfate reducers (members of Clostridia: Candidatus Desulforudis) were the most abundant bacteria in the deepest borehole water (660 m bgl). Out of 850 bacterial OTUs, only one, affiliated with the Comamonadaceae family, was found abundant (> 1% of total bacterial sequences) in all samples. Contribution of Archaea to the whole microbial communities was lower than 0.5%. Archaeal communities did not differ across the samples and they consisted of Halobacteriaceae. Out of 372 archaeal OTUs, five, belonging to the four genera Natronomonas, Halorubrum, Halobellus, and Halorhabdus, were the most numerous.


Assuntos
Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Água Doce/microbiologia , Microbiota , Sulfetos/análise , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Comamonadaceae/genética , Comamonadaceae/metabolismo , DNA Bacteriano/genética , Água Doce/química , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Sulfetos/metabolismo , Enxofre/análise , Enxofre/metabolismo , Microbiologia da Água
6.
Extremophiles ; 22(2): 233-246, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29260386

RESUMO

This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 107 cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment.


Assuntos
Microbiota , Salinidade , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Sais , Microbiologia da Água
7.
Antonie Van Leeuwenhoek ; 110(7): 945-962, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382378

RESUMO

Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth of 2 m (both having pH ~11 and ECe up to 423 dS m-1) were investigated using culture-based (culturing on alkaline medium) and culture-independent microbiological approaches (microscopic analyses and pyrosequencing). A surprisingly diverse bacterial community was discovered in this highly saline, alkaline and nutrient-poor environment, with the bacterial phyla Proteobacteria (representing 52.8% of the total bacterial community) and Firmicutes (16.6%) showing dominance. Compared to the surface layer, higher bacterial abundance and diversity values were detected in the deep zone, where more stable environmental conditions may occur. The surface layer was dominated by members of the genera Phenylobacterium, Chelativorans and Skermanella, while in the interior layer the genus Fictibacillus was dominant. The culturable aerobic, haloalkaliphilic bacteria strains isolated in this study belonged mostly to the genus Bacillus and were closely related to the species Bacillus pseudofirmus, B. cereus, B. plakortidis, B. thuringensis and B. pumilus.


Assuntos
Bactérias , Compostos de Cálcio , Óxidos , Hidróxido de Sódio , Microbiologia do Solo , Filogenia , Polônia , RNA Ribossômico 16S , Cloreto de Sódio
8.
Pol J Microbiol ; 64(4): 369-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26999957

RESUMO

This paper presents the results of the research on the number, taxonomic composition, and biochemical properties of bacterial strains isolated from the alkaline Solvay distillery lime, deposited at the repository in Janikowo (central Poland). Fifteen strains out of 17 were facultative alkaliphiles and moderate halophiles, and two were alkalitolerants and moderate halophiles. The number of aerobic bacteria cultured in alkaline lime was approximately 10(5) CFU ml(-1), and the total number of bacteria was 10(7) cells g(-1). According to 16S rRNA gene sequence analysis, nine strains belonged to the genus Bacillus, six to the genus Halomonas, one to the genus Planococcus, and one to the genus Microcella. Strains that hydrolyse starch and protein were the most numerous. Esterase (C4) and esterase lipase (C8) were detected in the majority of bacterial strains. Twelve strains exhibited α-glucosidase activity and nine, naphtol-AS-BI-phosphohydrolase activity. The present study proves that alkaliphilic bacteria of this type may constitute a source of potentially useful extremozymes.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Compostos de Cálcio , Óxidos , Filogenia , DNA Bacteriano/genética , Concentração de Íons de Hidrogênio , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo
9.
Front Microbiol ; 13: 1040434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452931

RESUMO

Gut health can be considered one of the major, manageable constituents of the animal immunity and performance. The fast spread of intestinal diseases, and increase of antimicrobial resistance have been observed, therefore the intestinal health has become not only economically relevant, but also highly important subject addressing the interest of public health. It is expected, that the strategies to control infections should be based on development of natural immunity in animals and producing resilient flocks using natural solutions, whilst eliminating antibiotics and veterinary medicinal products from action. Probiotics and prebiotics have been favored, because they have potential to directly or indirectly optimize intestinal health by manipulating the metabolism of the intestinal tract, including the microbiota. Studying the metabolome of probiotics and gut environment, both in vivo, or using the in vitro models, is required to attain the scientific understanding about the functions of bioactive compounds in development of gut health and life lasting immunity. There is a practical need to identify new metabolites being the key bioactive agents regulating biochemical pathways of systems associated with gut (gut-associated axes). Technological advancement in metabolomics studies, and increasing access to the powerful analytical platforms have paved a way to implement metabolomics in exploration of the effects of prebiotics and probiotics on the intestinal health of poultry. In this article, the basic principles of metabolomics in research involving probiotics and probiotics are introduced, together with the overview of existing strategies and suggestions of their use to study metabolome in poultry.

10.
J Sep Sci ; 34(6): 601-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21328535

RESUMO

Synthesis and properties of the multilayered stationary phases, which contain quaternary amine functional groups for the analysis of anions by ion chromatography, are described. The bonded phases were characterized by elemental analysis, solid-state (13)C NMR spectroscopy and chromatographic methods. The surface of 1,4-di(2-hydroxy-3-methacryloyloxypropoxy)phenol (solid support) was coated with polymeric layers formed by condensation polymerization of primary amine with diepoxide. Each layer of the anion exchange stationary phase consists of copolymer of methylamine (MA) and 1,4-butanedioldiglycidyl ether (BDDE). A series of stationary phases with different numbers of polymerized layers were tested. The separation of an inorganic anions sample (F(-), Cl(-), NO(2)(-), Br(-), NO(3)(-), additionally HPO(4)(2-) and SO(4)(2-)) was performed. In the measurement, a hydroxide, carbonate, bicarbonate and their mixture were used as mobile phases.

11.
Chromatographia ; 72(7-8): 611-616, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20949118

RESUMO

Synthesis and properties are described of multilayered stationary phases containing quaternary amine functional groups used for the analysis of inorganic anions by ion chromatography. The bonded phases were characterized by elemental analysis, solid state (13)C NMR spectroscopy and chromatographic methods. The surface of polyhydroxyethyl methacrylate (solid support) was coated with polymeric layers formed by condensation polymerization of primary amine with diepoxide. Each layer of the anion exchange stationary phase consisted of methylamine and 1,4-butanedioldiglycidyl ether copolymer. A series of stationary phases with different number of polymerized layers were tested. Separation of inorganic anions, such as F(-), Cl(-), NO(2) (-), Br(-), NO(3) (-), were performed. Aqueous hydroxide, carbonate and bicarbonate solutions were used as mobile phases.

12.
Environ Sci Pollut Res Int ; 27(21): 26681-26693, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32378101

RESUMO

Magnetic magnesium-zinc spinel ferrite Mg1 - xZnxFe2O4 (where x = 0.4, 0.6, and 0.8) was investigated as adsorbent for the efficient removal of Sr(II) ions and salicylic acid (SA) contaminants from aqueous medium. The characterization of ferrites was carried out using XRD, VSM, BET, SEM, and EDS. The surface charge of magnetic adsorbents was measured by the drift method. The determination of SA and Sr(II) ion concentrations in the solution phase was carried out by UFLC and complexometry, respectively. It was shown that varying of the Zn(II) content affected the adsorption capacities of magnesium-zinc ferrites. The increasing of zinc content from x(Zn2+) = 0.4 to x(Zn2+) = 0.6 increased the adsorption of Sr(II) ions from 50 to 65 mg/g, and then it was decreased to 36 mg/g for the sample with x(Zn) = 0.8. The Mg0.4Zn0.6Fe2O4 sample demonstrated the maximum adsorption capacity of 74 mg/g. The adsorption isotherm for Sr(II) was fitted by the Dubinin-Radushkevich, Langmuir, Freundlich, and Sips models. The adsorption kinetics of Sr(II) was analyzed by PFO, PSO, and Elovich models. The adsorption kinetics of SA was also investigated. It was demonstrated that the Mg0.2Zn0.8Fe2O4 sample exhibited 90% removal of salicylic acid from the water solutions. The results demonstrated that magnetic Mg-Zn ferrites with spinel structure are good sorbents for the removal of SA and Sr(II) ions from aqueous solution.


Assuntos
Poluentes Químicos da Água/análise , Zinco/análise , Adsorção , Compostos Férricos , Concentração de Íons de Hidrogênio , Íons , Cinética , Magnésio , Fenômenos Magnéticos , Ácido Salicílico , Termodinâmica
13.
Sci Total Environ ; 655: 842-854, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30481711

RESUMO

This paper presents study on the microbiome of a unique extreme environment - saline and alkaline lime, a by-product of soda ash and table salt production in Janikowo, central Poland. High-throughput 16S rDNA amplicon sequencing was used to reveal the structure of bacterial and archaeal communities in the lime samples, taken from repository ponds differing in salinity (2.3-25.5% NaCl). Surprisingly abundant and diverse bacterial communities were discovered in this extreme environment. The most important geochemical drivers of the observed microbial diversity were salinity, calcium ions, nutrients, and water content. The bacterial and archaeal communities in saline, alkaline lime were similar to those found in natural haloalkaline environments. Although the archaeal contribution to the whole microbial community was lower than 4%, the four archaeal genera Natronomonas, Halorubrum, Halobellus, and Halapricum constituted the core microbiome of saline, alkaline lime - a set of OTUs (> 0.1% of total archaeal relative abundance) present in all samples under study. The high proportion of novel, unclassified archaeal and bacterial sequences (not identified at 97% similarity level) in the 16S rRNA gene libraries indicated that potentially new genera, especially within the class of Thermoplasmata inhabit this unique environment.


Assuntos
Biodiversidade , Compostos de Cálcio , Microbiota/genética , Óxidos , Lagoas/microbiologia , Salinidade , Hidróxido de Sódio , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ambientes Extremos , Polônia , Lagoas/análise , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise
14.
Bioresour Technol ; 99(13): 5972-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18083511

RESUMO

This contribution presents the possibility of application of natural sorbent (Transcarpathian clinoptylolite (KL)) for immobilization of selected heavy metals in the sewage sludge. The influence of ion-exchange parameters (e.g. time, amount of zeolite) were discussed. Process of immobilization was performed using a static method (Batch). It was found that best possible conditions for immobilization of heavy metal ions were as follows: zeolite fraction 0.7-1.0mm, 5h of shaking, zeolite/sewage sludge ratio 2/98.


Assuntos
Metais Pesados/análise , Esgotos/análise , Poluentes do Solo/análise , Zeolitas , Adsorção , Polônia , Eliminação de Resíduos , Espectrofotometria , Ucrânia
15.
Environ Sci Pollut Res Int ; Spec No 1: 68-74, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12638752

RESUMO

Sewage sludge is a serious problem facing modern wastewater treatment plants. One of the methods to safely utilize the sludge is through composting and the agricultural use of the final product. In this study the compost samples from municipal sewage sludge are compared to the natural, rich in organic matter samples. Based on physicochemical properties of the material, the maturity indices are obtained to evaluate the quality of organic matter and estimate the similarities between the samples. The study shows that one-dimensional analysis like that based on maturity indices does not provide satisfactory answers concerning the nature of such complex materials. The data set of the analysis naturally possesses a multidimensional character so that the employment of advanced chemometric techniques like cluster analysis show a number of features which were hidden within the 'data flood'. The major conclusion of this work is that the compost from sewage sludge is similar to peat in the significance of the properties of the organic matter. Moreover, the organic matter of agricultural soil, which is most stable and has been naturally matured over a long period of time, differs substantially from the other samples.


Assuntos
Esgotos/química , Solo , Eliminação de Resíduos Líquidos , Agricultura , Análise por Conglomerados , Conservação dos Recursos Naturais , Compostos Orgânicos/análise
16.
Talanta ; 74(5): 1670-4, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18371834

RESUMO

Results of determination of selected imidazolium ionic liquids by isotachophoresis (ITP) with conductometric detection was presented. The effects of the molar mass of different ionic liquids on electrophoretic mobility was observed. The presented method was validated and basic validation parameters were determined. Limit of detection (LOD) in a 10 and 25ng/L for anions and cations, respectively, is very satisfied. Thanks to its low cost and high rate, the presented method can be used in qualitative routine analysis as an alternative technique to liquid chromatography.


Assuntos
Eletroforese/métodos , Imidazóis/isolamento & purificação , Líquidos Iônicos/isolamento & purificação , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA