Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 167(5): 1369-1384.e19, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863249

RESUMO

Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.


Assuntos
Células Sanguíneas/citologia , Doença/genética , Regiões Promotoras Genéticas , Linhagem da Célula , Separação Celular , Cromatina , Elementos Facilitadores Genéticos , Epigenômica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hematopoese , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
2.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863252

RESUMO

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Doenças do Sistema Imunitário/genética , Alelos , Diferenciação Celular , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/patologia , Humanos , Doenças do Sistema Imunitário/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , População Branca/genética
3.
Haematologica ; 106(10): 2613-2623, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32703790

RESUMO

Transcriptional profiling of hematopoietic cell subpopulations has helped to characterize the developmental stages of the hematopoietic system and the molecular bases of malignant and non-malignant blood diseases. Previously, only the genes targeted by expression microarrays could be profiled genome-wide. High-throughput RNA sequencing, however, encompasses a broader repertoire of RNA molecules, without restriction to previously annotated genes. We analyzed the BLUEPRINT consortium RNA-sequencing data for mature hematopoietic cell types. The data comprised 90 total RNA-sequencing samples, each composed of one of 27 cell types, and 32 small RNA-sequencing samples, each composed of one of 11 cell types. We estimated gene and isoform expression levels for each cell type using existing annotations from Ensembl. We then used guided transcriptome assembly to discover unannotated transcripts. We identified hundreds of novel non-coding RNA genes and showed that the majority have cell type-dependent expression. We also characterized the expression of circular RNA and found that these are also cell type-specific. These analyses refine the active transcriptional landscape of mature hematopoietic cells, highlight abundant genes and transcriptional isoforms for each blood cell type, and provide a valuable resource for researchers of hematologic development and diseases. Finally, we made the data accessible via a web-based interface: https://blueprint.haem.cam.ac.uk/bloodatlas/.


Assuntos
RNA Longo não Codificante , Transcriptoma , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Circular , RNA Longo não Codificante/genética , Análise de Sequência de RNA
4.
Blood ; 132(24): e35-e46, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30275110

RESUMO

Antithrombotic therapies reduce cardiovascular diseases by preventing arterial thrombosis and thromboembolism, but at expense of increased bleeding risks. Arterial thrombosis studies using genetically modified mice have been invaluable for identification of new molecular targets. Because of low sample sizes and heterogeneity in approaches or methodologies, a formal meta-analysis to compare studies of mice with single-gene defects encountered major limitations. To overcome these, we developed a novel synthesis approach to quantitatively scale 1514 published studies of arterial thrombus formation (in vivo and in vitro), thromboembolism, and tail-bleeding of genetically modified mice. Using a newly defined consistency parameter (CP), indicating the strength of published data, comparisons were made of 431 mouse genes, of which 17 consistently contributed to thrombus formation without affecting hemostasis. Ranking analysis indicated high correlations between collagen-dependent thrombosis models in vivo (FeCl3 injury or ligation/compression) and in vitro. Integration of scores and CP values resulted in a network of protein interactions in thrombosis and hemostasis (PITH), which was combined with databases of genetically linked human bleeding and thrombotic disorders. The network contained 2946 nodes linked to modifying genes of thrombus formation, mostly with expression in megakaryocytes. Reactome pathway analysis and network characteristics revealed multiple novel genes with potential contribution to thrombosis/hemostasis. Studies with additional knockout mice revealed that 4 of 8 (Apoe, Fpr2, Ifnar1, Vps13a) new genes were modifying in thrombus formation. The PITH network further: (i) revealed a high similarity of murine and human hemostatic and thrombotic processes and (ii) identified multiple new candidate proteins regulating these processes.


Assuntos
Hemorragia , Trombose , Animais , Modelos Animais de Doenças , Hemorragia/genética , Hemorragia/metabolismo , Hemorragia/patologia , Humanos , Camundongos , Camundongos Knockout , Trombose/genética , Trombose/metabolismo , Trombose/patologia
5.
Nucleic Acids Res ; 46(D1): D754-D761, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29155950

RESUMO

The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.


Assuntos
Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genoma , Disseminação de Informação , Animais , Epigenômica , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Vertebrados/genética , Navegador
6.
Nucleic Acids Res ; 45(D1): D635-D642, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899575

RESUMO

Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access methods ensure uniform data analysis and distribution for all supported species. Together, these provide a comprehensive solution for large-scale and targeted genomics applications alike. Among many other developments over the past year, we have improved our resources for gene regulation and comparative genomics, and added CRISPR/Cas9 target sites. We released new browser functionality and tools, including improved filtering and prioritization of genome variation, Manhattan plot visualization for linkage disequilibrium and eQTL data, and an ontology search for phenotypes, traits and disease. We have also enhanced data discovery and access with a track hub registry and a selection of new REST end points. All Ensembl data are freely released to the scientific community and our source code is available via the open source Apache 2.0 license.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Ferramenta de Busca , Software , Navegador , Animais , Mineração de Dados , Evolução Molecular , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Humanos , Anotação de Sequência Molecular , Especificidade da Espécie , Vertebrados
7.
Blood ; 127(23): 2903-14, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-26912466

RESUMO

Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Perda Auditiva/genética , Mutação , Trombocitopenia/genética , Células A549 , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Criança , Feminino , Forminas , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Perda Auditiva/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Síndrome , Trombocitopenia/complicações , Adulto Jovem
8.
Blood ; 127(23): 2791-803, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27084890

RESUMO

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


Assuntos
Transtornos Plaquetários/genética , Predisposição Genética para Doença , Hemorragia/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Trombose/genética , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
9.
PLoS Comput Biol ; 12(6): e1004937, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27309738

RESUMO

The advancement of high-throughput sequencing (HTS) technologies and the rapid development of numerous analysis algorithms and pipelines in this field has resulted in an unprecedentedly high demand for training scientists in HTS data analysis. Embarking on developing new training materials is challenging for many reasons. Trainers often do not have prior experience in preparing or delivering such materials and struggle to keep them up to date. A repository of curated HTS training materials would support trainers in materials preparation, reduce the duplication of effort by increasing the usage of existing materials, and allow for the sharing of teaching experience among the HTS trainers' community. To achieve this, we have developed a strategy for materials' curation and dissemination. Standards for describing training materials have been proposed and applied to the curation of existing materials. A Git repository has been set up for sharing annotated materials that can now be reused, modified, or incorporated into new courses. This repository uses Git; hence, it is decentralized and self-managed by the community and can be forked/built-upon by all users. The repository is accessible at http://bioinformatics.upsc.se/htmr.


Assuntos
Biologia Computacional/educação , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Algoritmos , Interpretação Estatística de Dados , Educação , Humanos , Ensino
10.
Brief Bioinform ; 14(5): 563-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23543352

RESUMO

The widespread adoption of high-throughput next-generation sequencing (NGS) technology among the Australian life science research community is highlighting an urgent need to up-skill biologists in tools required for handling and analysing their NGS data. There is currently a shortage of cutting-edge bioinformatics training courses in Australia as a consequence of a scarcity of skilled trainers with time and funding to develop and deliver training courses. To address this, a consortium of Australian research organizations, including Bioplatforms Australia, the Commonwealth Scientific and Industrial Research Organisation and the Australian Bioinformatics Network, have been collaborating with EMBL-EBI training team. A group of Australian bioinformaticians attended the train-the-trainer workshop to improve training skills in developing and delivering bioinformatics workshop curriculum. A 2-day NGS workshop was jointly developed to provide hands-on knowledge and understanding of typical NGS data analysis workflows. The road show-style workshop was successfully delivered at five geographically distant venues in Australia using the newly established Australian NeCTAR Research Cloud. We highlight the challenges we had to overcome at different stages from design to delivery, including the establishment of an Australian bioinformatics training network and the computing infrastructure and resource development. A virtual machine image, workshop materials and scripts for configuring a machine with workshop contents have all been made available under a Creative Commons Attribution 3.0 Unported License. This means participants continue to have convenient access to an environment they had become familiar and bioinformatics trainers are able to access and reuse these resources.


Assuntos
Biologia Computacional/educação , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Austrália , Instrução por Computador/métodos , Comportamento Cooperativo , Currículo , Ensino
11.
Genomics ; 100(4): 212-21, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22819921

RESUMO

This study pertains to the regulatory network of neurogenin3 (NGN3, approved symbol: NEUROG3), the main regulator of insulin producing cells' formation. In silico regulatory region analyses of known and novel targets of NGN3 revealed the presence of two variants of a regulatory module that appeared conserved at the most phylogenetically distant species with pancreas. Both variants of this module contained binding sites of six transcription factors implicated in pancreas development. Nevertheless, an additional factor was found only into the module of the down-regulated by NGN3 genes. Whole genome analyses confirmed the statistical significance of these regulatory modules. Investigation of protein-protein interactions among the factors bound into these sequences indicated the formation of alternative protein complexes resulting into the up- or down-regulation of the respective genes. Subsequently, an NGN3-guided regulatory network, was modeled, describing the interactions among the analyzed genes with their transcriptional regulators, leading into the differentiation of cells capable of producing insulin.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Insulina , Proteínas do Tecido Nervoso , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Biologia Computacional , Genoma , Insulina/biossíntese , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Filogenia , Mapas de Interação de Proteínas , Fatores de Transcrição/genética
12.
Blood Adv ; 5(2): 549-564, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496751

RESUMO

Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder characterized by a lack of α-granules in platelets and progressive myelofibrosis. Rare loss-of-function variants in neurobeachin-like 2 (NBEAL2), a member of the family of beige and Chédiak-Higashi (BEACH) genes, are causal of GPS. It is suggested that BEACH domain containing proteins are involved in fusion, fission, and trafficking of vesicles and granules. Studies in knockout mice suggest that NBEAL2 may control the formation and retention of granules in neutrophils. We found that neutrophils obtained from the peripheral blood from 13 patients with GPS have a normal distribution of azurophilic granules but show a deficiency of specific granules (SGs), as confirmed by immunoelectron microscopy and mass spectrometry proteomics analyses. CD34+ hematopoietic stem cells (HSCs) from patients with GPS differentiated into mature neutrophils also lacked NBEAL2 expression but showed similar SG protein expression as control cells. This is indicative of normal granulopoiesis in GPS and identifies NBEAL2 as a potentially important regulator of granule release. Patient neutrophil functions, including production of reactive oxygen species, chemotaxis, and killing of bacteria and fungi, were intact. NETosis was absent in circulating GPS neutrophils. Lack of NETosis is suggested to be independent of NBEAL2 expression but associated with SG defects instead, as indicated by comparison with HSC-derived neutrophils. Since patients with GPS do not excessively suffer from infections, the consequence of the reduced SG content and lack of NETosis for innate immunity remains to be explored.


Assuntos
Síndrome da Plaqueta Cinza , Animais , Plaquetas , Proteínas Sanguíneas , Grânulos Citoplasmáticos , Síndrome da Plaqueta Cinza/genética , Humanos , Camundongos , Neutrófilos
13.
Cell Rep ; 24(10): 2784-2794, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184510

RESUMO

Neutrophils are short-lived blood cells that play a critical role in host defense against infections. To better comprehend neutrophil functions and their regulation, we provide a complete epigenetic overview, assessing important functional features of their differentiation stages from bone marrow-residing progenitors to mature circulating cells. Integration of chromatin modifications, methylation, and transcriptome dynamics reveals an enforced regulation of differentiation, for cellular functions such as release of proteases, respiratory burst, cell cycle regulation, and apoptosis. We observe an early establishment of the cytotoxic capability, while the signaling components that activate these antimicrobial mechanisms are transcribed at later stages, outside the bone marrow, thus preventing toxic effects in the bone marrow niche. Altogether, these data reveal how the developmental dynamics of the chromatin landscape orchestrate the daily production of a large number of neutrophils required for innate host defense and provide a comprehensive overview of differentiating human neutrophils.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos
14.
Nat Med ; 24(6): 868-880, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29785028

RESUMO

Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.


Assuntos
Cromatina/metabolismo , Epigenômica , Leucemia Linfocítica Crônica de Células B/genética , Linfócitos B/metabolismo , Sequência de Bases , Estudos de Coortes , Humanos
15.
PLoS One ; 12(5): e0178095, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542600

RESUMO

Genome-wide association studies have identified a genetic variant at 3p14.3 (SNP rs1354034) that strongly associates with platelet number and mean platelet volume in humans. While originally proposed to be intronic, analysis of mRNA expression in primary human hematopoietic subpopulations reveals that this SNP is located directly upstream of the predominantly expressed ARHGEF3 isoform in megakaryocytes (MK). We found that ARHGEF3, which encodes a Rho guanine exchange factor, is dramatically upregulated during both human and murine MK maturation. We show that the SNP (rs1354034) is located in a DNase I hypersensitive region in human MKs and is an expression quantitative locus (eQTL) associated with ARHGEF3 expression level in human platelets, suggesting that it may be the causal SNP that accounts for the variations observed in human platelet traits and ARHGEF3 expression. In vitro human platelet activation assays revealed that rs1354034 is highly correlated with human platelet activation by ADP. In order to test whether ARHGEF3 plays a role in MK development and/or platelet function, we developed an Arhgef3 KO/LacZ reporter mouse model. Reflecting changes in gene expression, LacZ expression increases during MK maturation in these mice. Although Arhgef3 KO mice have significantly larger platelets, loss of Arhgef3 does not affect baseline MK or platelets nor does it affect platelet function or platelet recovery in response to antibody-mediated platelet depletion compared to littermate controls. In summary, our data suggest that modulation of ARHGEF3 gene expression in humans with a promoter-localized SNP plays a role in human MKs and human platelet function-a finding resulting from the biological follow-up of human genetic studies. Arhgef3 KO mice partially recapitulate the human phenotype.


Assuntos
Plaquetas/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Plaquetas/citologia , Diferenciação Celular/fisiologia , Tamanho Celular , Estudos de Coortes , Feminino , Sangue Fetal , Regulação da Expressão Gênica , Humanos , Masculino , Volume Plaquetário Médio , Megacariócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas
16.
J Am Coll Cardiol ; 69(14): 1774-1791, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28385306

RESUMO

BACKGROUND: Inflammation drives atherosclerotic plaque rupture. Although inflammation can be measured using fluorine-18-labeled fluorodeoxyglucose positron emission tomography ([18F]FDG PET), [18F]FDG lacks cell specificity, and coronary imaging is unreliable because of myocardial spillover. OBJECTIVES: This study tested the efficacy of gallium-68-labeled DOTATATE (68Ga-DOTATATE), a somatostatin receptor subtype-2 (SST2)-binding PET tracer, for imaging atherosclerotic inflammation. METHODS: We confirmed 68Ga-DOTATATE binding in macrophages and excised carotid plaques. 68Ga-DOTATATE PET imaging was compared to [18F]FDG PET imaging in 42 patients with atherosclerosis. RESULTS: Target SSTR2 gene expression occurred exclusively in "proinflammatory" M1 macrophages, specific 68Ga-DOTATATE ligand binding to SST2 receptors occurred in CD68-positive macrophage-rich carotid plaque regions, and carotid SSTR2 mRNA was highly correlated with in vivo 68Ga-DOTATATE PET signals (r = 0.89; 95% confidence interval [CI]: 0.28 to 0.99; p = 0.02). 68Ga-DOTATATE mean of maximum tissue-to-blood ratios (mTBRmax) correctly identified culprit versus nonculprit arteries in patients with acute coronary syndrome (median difference: 0.69; interquartile range [IQR]: 0.22 to 1.15; p = 0.008) and transient ischemic attack/stroke (median difference: 0.13; IQR: 0.07 to 0.32; p = 0.003). 68Ga-DOTATATE mTBRmax predicted high-risk coronary computed tomography features (receiver operating characteristics area under the curve [ROC AUC]: 0.86; 95% CI: 0.80 to 0.92; p < 0.0001), and correlated with Framingham risk score (r = 0.53; 95% CI: 0.32 to 0.69; p <0.0001) and [18F]FDG uptake (r = 0.73; 95% CI: 0.64 to 0.81; p < 0.0001). [18F]FDG mTBRmax differentiated culprit from nonculprit carotid lesions (median difference: 0.12; IQR: 0.0 to 0.23; p = 0.008) and high-risk from lower-risk coronary arteries (ROC AUC: 0.76; 95% CI: 0.62 to 0.91; p = 0.002); however, myocardial [18F]FDG spillover rendered coronary [18F]FDG scans uninterpretable in 27 patients (64%). Coronary 68Ga-DOTATATE PET scans were readable in all patients. CONCLUSIONS: We validated 68Ga-DOTATATE PET as a novel marker of atherosclerotic inflammation and confirmed that 68Ga-DOTATATE offers superior coronary imaging, excellent macrophage specificity, and better power to discriminate high-risk versus low-risk coronary lesions than [18F]FDG. (Vascular Inflammation Imaging Using Somatostatin Receptor Positron Emission Tomography [VISION]; NCT02021188).


Assuntos
Aterosclerose/diagnóstico por imagem , Fluordesoxiglucose F18 , Inflamação/diagnóstico por imagem , Compostos Organometálicos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Artérias Carótidas/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Somatostatina/análise , Receptores de Somatostatina/metabolismo
17.
Sci Transl Med ; 8(328): 328ra30, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26936507

RESUMO

The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC's self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr(419) phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients' platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC-positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients' blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.


Assuntos
Osso e Ossos/patologia , Hemorragia/genética , Mutação/genética , Mielofibrose Primária/genética , Trombocitopenia/genética , Quinases da Família src/genética , Animais , Plaquetas/patologia , Células COS , Chlorocebus aethiops , Feminino , Hematopoese , Hemorragia/complicações , Humanos , Masculino , Linhagem , Fenótipo , Mielofibrose Primária/complicações , Trombocitopenia/complicações , Transfecção , Peixe-Zebra
18.
Science ; 345(6204): 1251033, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25258084

RESUMO

Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.


Assuntos
Processamento Alternativo , Linhagem da Célula/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Variação Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trombopoese/genética , Transcriptoma
19.
Nat Genet ; 45(5): 542-545, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563608

RESUMO

The blood group Vel was discovered 60 years ago, but the underlying gene is unknown. Individuals negative for the Vel antigen are rare and are required for the safe transfusion of patients with antibodies to Vel. To identify the responsible gene, we sequenced the exomes of five individuals negative for the Vel antigen and found that four were homozygous and one was heterozygous for a low-frequency 17-nucleotide frameshift deletion in the gene encoding the 78-amino-acid transmembrane protein SMIM1. A follow-up study showing that 59 of 64 Vel-negative individuals were homozygous for the same deletion and expression of the Vel antigen on SMIM1-transfected cells confirm SMIM1 as the gene underlying the Vel blood group. An expression quantitative trait locus (eQTL), the common SNP rs1175550 contributes to variable expression of the Vel antigen (P = 0.003) and influences the mean hemoglobin concentration of red blood cells (RBCs; P = 8.6 × 10(-15)). In vivo, zebrafish with smim1 knockdown showed a mild reduction in the number of RBCs, identifying SMIM1 as a new regulator of RBC formation. Our findings are of immediate relevance, as the homozygous presence of the deletion allows the unequivocal identification of Vel-negative blood donors.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Membrana Eritrocítica/metabolismo , Eritrócitos/imunologia , Deleção de Genes , Homozigoto , Proteínas de Membrana/genética , Locos de Características Quantitativas , Alelos , Animais , Biomarcadores/metabolismo , Antígenos de Grupos Sanguíneos/imunologia , Antígenos de Grupos Sanguíneos/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Eritrócitos/metabolismo , Eritrócitos/patologia , Exoma/genética , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Isoanticorpos/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Peixe-Zebra/genética
20.
BMC Res Notes ; 5: 265, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22672625

RESUMO

BACKGROUND: Bioinformatics and high-throughput technologies such as microarray studies allow the measure of the expression levels of large numbers of genes simultaneously, thus helping us to understand the molecular mechanisms of various biological processes in a cell. FINDINGS: We calculate the Pearson Correlation Coefficient (r-value) between probe set signal values from Affymetrix Human Genome Microarray samples and cluster the human genes according to the r-value correlation matrix using the Neighbour Joining (NJ) clustering method. A hyper-geometric distribution is applied on the text annotations of the probe sets to quantify the term overrepresentations. The aim of the tool is the identification of closely correlated genes for a given gene of interest and/or the prediction of its biological function, which is based on the annotations of the respective gene cluster. CONCLUSION: Human Gene Correlation Analysis (HGCA) is a tool to classify human genes according to their coexpression levels and to identify overrepresented annotation terms in correlated gene groups. It is available at: http://biobank-informatics.bioacademy.gr/coexpression/.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica , Análise por Conglomerados , RNA Helicases DEAD-box/genética , Bases de Dados Genéticas , Redes Reguladoras de Genes , Antígenos HLA/genética , Humanos , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Metalotioneína/genética , Modelos Genéticos , Modelos Estatísticos , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA