RESUMO
Glycoconjugate vaccines are important additions to the existing means for prevention of diseases caused by bacterial and viral pathogens. Conjugating carbohydrates to proteins is a crucial step in the development of these vaccines. Traditional mass spectrometry techniques, such as MALDI-TOF and SELDI-TOF, have difficulties in detecting glycoconjugates with high molecular masses. Mass photometry (MP) is a single-molecule technique that has been recently developed, which allows mass measurements of individual molecules and generates mass distributions based on hundreds to thousands of these measurements. In this study, we evaluated the performance of MP in monitoring carbohydrate-protein conjugation reactions and characterization of conjugates. Three different glycoconjugates were prepared from carrier protein BSA, and one from a large protein complex, a virus capsid with 3.74 MDa molecular mass. The masses measured by MP were consistent with those obtained by SELDI-TOF-MS and SEC-MALS. The conjugation of BSA dimer to carbohydrate antigen was also successfully characterized. This study shows that the MP technique is a promising alternative to methods developed earlier for monitoring glycoconjugation reactions and characterization of glycoconjugates. It measures intact molecules in solution and it is highly accurate over a wide mass range. MP requires only a very small amount of sample and has no specific buffer constraints. Other MP advantages include minimal cost of consumables and rapid data collection and analysis. Its advantages over other methods make it a valuable tool for researchers in the glycoconjugation field.
Assuntos
Glicoconjugados , Vacinas , Glicoconjugados/química , Carboidratos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
The lipopolysaccharide (LPS) of Vibrio cholerae O139, strain CIRS245, was isolated conventionally, and the lipidâ A was removed by mild acid hydrolysis (0.1 m NaOAc buffer containing 1 % SDS, pHâ 4.2, 95 °C, 8â h). The crude product was a complex mixture consisting mainly of constituent fragments of the O-specific polysaccharide-core (OSPc). The OSPc was only a minor component in the mixture. Two-stage purification of the crude OSPc by HPLC gave pure OSPc fragment of the LPS, as shown by NMR spectroscopy, analytical HPLC and ESI-MS. This material is the purest OSPc fragment of the LPS from Vibrio cholerae O139 reported to date. The purified OSPc was readily converted to the corresponding methyl squarate derivative and the latter was conjugated to BSA. The conjugate, when examined by ELISA, showed immunoreactivity with sera from patients in Bangladesh recovering from cholera caused by V. cholerae O139, but not O1.
Assuntos
Lipopolissacarídeos/química , Vibrio cholerae O139/metabolismo , Cromatografia Líquida de Alta Pressão , Hidrólise , Lipídeo A/metabolismo , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Acetato de Sódio/química , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Glycoclusters displaying synthetic fragments of the O-specific polysaccharide (OSP) of Vibrio cholerae O1 serotype Inaba on a carbohydrate platform were prepared by Cu(i)-catalysed azide alkyne cycloaddition (CuAAC, click chemistry). The clusters were subsequently conjugated to BSA via squaric acid chemistry. Their immunoreactivity was compared with those of similar conventional conjugates, i.e. made from single oligosaccharides presented in non cluster form, using plasma of patients recovering from cholera. The results showed that the conjugates were displayed in immunologically relevant manners and that the immunoreactivity of hexasaccharide-cluster conjugates was similar to that of a conjugate displaying OSP isolated from wild type V. cholerae, further supporting the immunologic relevance of antigens made from synthetic oligosaccharides.
Assuntos
Cólera/imunologia , Antígenos O/imunologia , Vacinas/imunologia , Configuração de Carboidratos , Humanos , Antígenos O/química , Vibrio cholerae O1/química , Vibrio cholerae O1/imunologiaRESUMO
The tetrasaccharide (2-O-methyl-4-(3-hydroxy-3-methylbutamido)-4,6-dideoxy-α-d-glucopyranosyl-(1â3)-α-l-rhamnopyranosyl-(1â3)-α-l-rhamnopyranosyl-(1â2)-l-rhamnopyranose) from the major exosporium protein (BclA) of Bacillus anthracis has been proposed as a target for development of diagnostics and immune therapy or prophylaxis. While the immunodominant character of the anthrose residue has been previously elucidated, the role of the stereochemical configuration of the downstream rhamnose is unknown. Because the linkage of this residue to the GlcNAc bridging the glycan and the protein is lost during isolation of the tetrasaccharide, its α- and ß-glycoforms have been synthesized. Herein, we prepared neoglycoconjugates from a series of fragments of the tetrasaccharide, including the complete α- and ß-tetrasaccharide glycoforms, a 2-demethoxylated version of the α-tetrasaccharide, and the α- and ß-trirhamnosides and CRM197. By immunization of mice, we showed that the anti α- and ß-tetrasaccharide serum equally recognized both glycoforms. In contrast the sera produced following immunization with the α- and ß-trirhamnoside fragments exhibited higher recognition for their own antigens than for their anomeric counterparts. The anti α- and ß-tetrasaccharide sera recognized Sterne spores in a comparable fashion. ΔBclA spores not expressing the major exosporium protein were also recognized by the same sera, while mutants that produced the carbohydrate antigen with deletion of either rhamnose or anthrose were not. The tetrasaccharide could, therefore, be expressed in proteins other than BlcA. This work proves that α- and ß-tetrasaccharide are equally potent immunogens.
Assuntos
Bacillus anthracis/metabolismo , Oligossacarídeos/imunologia , Polissacarídeos Bacterianos/imunologia , Ramnose/metabolismo , Animais , Anticorpos Antibacterianos/imunologia , Bacillus anthracis/imunologia , Feminino , Glicoconjugados/imunologia , Isomerismo , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos BALB C , Esporos Bacterianos/imunologia , Relação Estrutura-AtividadeRESUMO
Background: Cholera is a severe dehydrating illness of humans caused by toxigenic strains of Vibrio cholerae O1 or O139. Identification of immunogenic V. cholerae antigens could lead to a better understanding of protective immunity in human cholera. Methods: We probed microarrays containing 3652 V. cholerae antigens with plasma and antibody-in-lymphocyte supernatant (ALS, a surrogate marker of mucosal immune responses) from patients with severe cholera caused by V. cholerae O1 in Bangladesh and age-, sex-, and ABO-matched Bangladeshi controls. We validated a subset of identified antigens using enzyme-linked immunosorbent assay. Results: Overall, we identified 608 immunoreactive V. cholerae antigens in our screening, 59 of which had higher immunoreactivity in convalescent compared with acute-stage or healthy control samples (34 in plasma, 39 in mucosal ALS; 13 in both sample sets). Identified antigens included cholera toxin B and A subunits, V. cholerae O-specific polysaccharide and lipopolysaccharide, toxin coregulated pilus A, sialidase, hemolysin A, flagellins (FlaB, FlaC, and FlaD), phosphoenolpyruvate-protein phosphotransferase, and diaminobutyrate-2-oxoglutarate aminotransferase. Conclusions: This study is the first antibody profiling of the mucosal and systemic antibody responses to the nearly complete V. cholerae O1 protein immunome; it has identified antigens that may aid in the development of an improved cholera vaccine.
Assuntos
Cólera/imunologia , Imunidade nas Mucosas , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Vibrio cholerae O1/imunologia , Adolescente , Adulto , Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Bangladesh/epidemiologia , Estudos de Casos e Controles , Cólera/epidemiologia , Toxina da Cólera/sangue , Feminino , Flagelina/sangue , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa/imunologia , Antígenos O/sangue , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/sangue , Fosfotransferases (Aceptor do Grupo Nitrogenado)/sangue , Reprodutibilidade dos Testes , Vibrio cholerae O1/isolamento & purificação , Vibrio cholerae O139/isolamento & purificação , Adulto JovemRESUMO
By using O-SP-core (O-SPcNH2 ) polysaccharide, isolated from Vibrio cholera O1 lipopolysaccharide (LPS) and related synthetic substances, a detailed study of factors that affect conjugation of bacterial polysaccharides to protein carriers through squaric acid chemistry to form conjugate vaccines has been carried out. Several previously unrecognized processes that take place during the squarate labeling of the O-SPcNH2 and subsequent conjugation of the formed squarate (O-SPcNH-SqOMe) have been identified. The efficiency of conjugation at pHâ 8.5, 9.0, and 9.5 to bovine serum albumin (BSA) and to the recombinant tetanus toxin fragment C (rTT-Hc) has been determined. The study led to a protocol for more efficient labeling of O-SPcNH2 antigen with the methyl squarate group, to yield a higher-quality, more potent squarate conjugation reagent. Its use resulted in about twofold increases in conjugation efficiency (from 23-26 % on BSA to 51 % on BSA and 55 % on rTT-Hc). The spent conjugation reagent could be recovered and regenerated by treatment with MeI in the absence of additional base. The immunological properties of the experimental vaccine made from the regenerated conjugation reagent were comparable with those of the immunogen made from the parent O-SPcNH-SqOMe.
Assuntos
Antígenos de Bactérias/imunologia , Vacinas contra Cólera/imunologia , Ciclobutanos/imunologia , Glicoconjugados/imunologia , Animais , Antígenos de Bactérias/química , Bovinos , Cólera/imunologia , Vacinas contra Cólera/química , Ciclobutanos/síntese química , Ciclobutanos/química , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Soroalbumina Bovina/química , Soroalbumina Bovina/imunologia , Toxina Tetânica/química , Toxina Tetânica/imunologia , Febre Tifoide/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Vibrio choleraeRESUMO
Three pentasaccharides, two tetrasaccharides, and a trisaccharide fragment of the O-specific antigen of Vibrio cholerae O139 were synthesized by applying 1 + 1, 2 + 1, 3 + 1, and 4 + 1 coupling strategies. The most challenging tasks involved were the synthesis of the 1,2-cis-glycosidic linkage between galactose and the linker (spacer) molecule and final purification of the target multicharged substances. Difficulties with final deprotection by hydrogenation/hydrogenolysis caused by the presence of galacturonic acid were overcome by protecting the acid with a group inert to the treatment with hydrogen. Some intermediates described previously as incompletely characterized amorphous materials were obtained in the crystalline condition and were fully characterized for the first time.
Assuntos
Glicosídeos/química , Ácidos Hexurônicos/química , Antígenos O/química , Oligossacarídeos/química , Trissacarídeos/química , Vibrio cholerae O139/química , Cromatografia Líquida de Alta Pressão , Cristalização , Hidrogênio/químicaRESUMO
The first chemical synthesis of the complete protective O-antigen of a human-disease-causing pathogenic bacterium is described. The synthesis involved a protecting-group strategy that facilitated the regioselectivity of the key transformations, stereoselective glycosylation reactions, and enabled the one-step global deprotection of the completely assembled, fully protected, phosphorylated hexasaccharide by hydrogenation/hydrogenolysis. The final amino-group-functionalized, linker-equipped antigen was obtained in a form ready for conjugation to suitable carriers, for example, proteins, to yield immunogens.
Assuntos
Antígenos O/química , Vibrio cholerae O139/química , Configuração de CarboidratosRESUMO
A new pathway to the tetrasaccharide α-Colp-(1â2)-4,6-P-ß-d-Galp-(1â3)-[α-Colp-(1â4)]-ß-d-GlcpNAc-1-(OCH2CH2)3NH2 has been developed. Glycosylation of 8-azido-3,6-dioxaoctyl 4,6-O-benzylidene-2-deoxy-2-trichloroacetamido-ß-d-glucopyranoside with 3,4,6-tri-O-acetyl-2-O-bromoacetyl-α-d-galactopyranosyl bromide afforded the ß-linked disaccharide. Debromoacetylation followed by reductive opening of the benzylidene acetal afforded the disaccharide diol acceptor. Halide-assisted glycosylation with 2,4-di-O-benzyl-α-colitosyl bromide gave the 1,2-cis-coupling product. Deacetylation followed by regioselective phosphorylation gave isomeric (R,S)-(P)-4(II),6(II)-cyclic phosphates, which were globally deprotected by one-step catalytic (Pd/C) hydrogenation/hydrogenolysis. The target tetrasaccharide, obtained in high overall yield, is amenable for conjugation to proteins.
Assuntos
Glucosídeos/química , Oligossacarídeos/síntese química , Vibrio cholerae O139/química , Fenômenos Biológicos , Sequência de Carboidratos , Catálise , Glicosilação , Isomerismo , Oligossacarídeos/química , FosforilaçãoRESUMO
N-Bromosuccinimide-mediated 4,6-O-benzylidene ring opening in 8-azido-3,6-dioxaoctyl 4,6-O-benzylidene-2-deoxy-2-trichloroacetamido-ß-D-glucopyranoside afforded the corresponding 4-O-benzoyl-6-bromo-6-deoxy analogue, which was coupled with 3,4,6-tri-O-acetyl-2-O-benzyl-α-D-galactopyranosyl chloride to give the 1,2-cis α-linked disaccharide as the major product. Conventional hydroxyl group manipulation in the latter and products of further conversions gave the desired, functionalized disaccharide α-D-GalpA-(1â3)-ß-D-QuipNAc. The rare, foregoing sequence forms the downstream end in the O-specific polysaccharide of both Vibrio cholerae O22 and O139. Halide-assisted glycosylation at 4(I)-OH in 8-azido-3,6-dioxaoctyl 6-O-benzyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-ß-D-galactopyranosyl)-2-trichloroacetamido-ß-D-glucopyranoside, obtained by regioselective reductive opening of the acetal ring in the parent 4(I),6(I)-O-benzylidene derivative, with 2,4-di-O-benzyl-α-colitosyl bromide, gave exclusively the α-linked trisaccharide. The latter was sequentially deacetylated and selectively benzylated to give 8-azido-3,6-dioxaoctyl 2,4-di-O-benzyl-3,6-dideoxy-α-L-xylo-hexopyranosyl-(1â4)-[3-O-benzyl-ß-D-galactopyranosyl-(1â3)]-6-O-benzyl-2-deoxy-2-trichloroacetamido-ß-D-glucopyranoside. Subsequent selective phosphorylation of the triol, thus obtained, with 2,2,2-trichloroethyl phosphorodichloridate afforded isomeric (R,S)-(P)-4(II),6(II)-cyclic phosphates, which were both obtained in crystalline form and fully characterized. Each of the latter was globally deprotected by catalytic (Pd/C) hydrogenation/hydrogenolysis to give the desired, amino-functionalized, spacer-equipped, phosphorylated upstream trisaccharide fragment of the O-PS of V. cholerae O139.
Assuntos
Acetamidas/química , Compostos de Benzilideno/química , Bromosuccinimida/química , Dissacarídeos/síntese química , Trissacarídeos/síntese química , Dissacarídeos/química , Glicosilação , Oligossacarídeos/química , Fosforilação , Trissacarídeos/química , Vibrio cholerae O139RESUMO
The trimethylsilyl trifluoromethanesulfonate (TMSOTf)-catalyzed reaction of methyl 6-hydroxyhexanoate with 3-O-benzyl-4-(2,4-di-O-acetyl-3-deoxy-L-glycero-tetronamido)-4,6-dideoxy-2-O-levulinoyl-α-d-mannopyranosyl trichloroacetimidate followed by a two-step deprotection (hydrogenolysis over Pd/C catalyst and Zemplén deacylation, to simultaneously remove the acetyl and levulinoyl groups) gave 5-(methoxycarbonyl)pentyl 4-(3-deoxy-L-glycero-tetronamido)-4,6-dideoxy-α-D-mannopyranoside. The structure of the latter, for which crystals were obtained in the analytically pure state for the first time, followed from its NMR and high-resolution mass spectra and was confirmed by X-ray crystallography. The molecule has two approximately linear components; a line through the aglycon intersects a line through the mannosyl and tetronylamido groups at 120°. The crystal packing separates the aglycon groups from the tetronylamido and mannosyl groups, with only C-H...O hydrogen bonding among the aglycon groups and N-H...O, O-H...O and C-H...O links among the tetronylamido and mannosyl groups. A carbonyl oxygen atom accepts the strongest O-H...O hydrogen bond and two strong C-H...O hydrogen bonds. The geometric properties were compared with those of related molecules.
Assuntos
Manosídeos/síntese química , Antígenos O/química , Vibrio cholerae O1/metabolismo , Sequência de Carboidratos , Cristalografia por Raios X , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Manosídeos/química , Vibrio cholerae O1/químicaRESUMO
BACKGROUND: Shigella is the third leading global cause of moderate or severe diarrhoea among children younger than 5 years globally, and is the leading cause in children aged 24-59 months. The mechanism of protection against Shigella infection and disease in endemic areas is uncertain. We aimed to compare the Shigella-specific antibody responses in individuals living in Shigella-endemic and non-endemic areas, and to identify correlates of protection in a Shigella-endemic location. METHODS: We applied a systems approach to retrospectively analyse serological responses to Shigella across endemic and non-endemic populations. We profiled serum samples collected from 44 individuals from the USA without previous exposure to Shigella and who were experimentally challenged with Shigella sonnei (non-endemic setting), and serum samples collected from 55 Peruvian army recruits (endemic setting). In the endemic setting, a subset of 37 samples collected from individuals infected with culture-confirmed Shigella flexneri 2a were divided into two groups: susceptible, which included individuals infected within 90 days of entering the camp (n=29); or resistant, which included individuals infected later than 90 days after entering the camp (n=8). We analysed Shigella-specific antibody isotype, subclass, and Fc receptor binding profiles across IpaB, IpaC, IpaD, and lipopolysaccharide from S flexneri 2a, 3a, and 6, and S sonnei, and O-specific polysaccharide (OSP) from S flexneri 2a and 3a and S sonnei. We also evaluated antibody-mediated complement deposition and innate immune cell activation. The main outcome of interest was the detection of antibody markers and functionality associated with protection against shigellosis in a high-burden endemic setting. FINDINGS: Adults with endemic exposure to Shigella possessed broad and functional antibody responses across polysaccharide, glycolipid, and protein antigens compared with individuals from non-endemic regions. In a setting with high Shigella burden, elevated levels of OSP-specific Fcα receptor (FcαR) binding antibodies were associated with resistance to shigellosis, whereas total OSP-specific IgA was not, suggesting a potentially unique functionality. OSP-specific FcαR binding IgA found in resistant individuals activated bactericidal neutrophil functions including phagocytosis, degranulation, and production of reactive oxygen species. Moreover, IgA depletion from resistant serum significantly reduced binding of OSP-specific antibodies to FcαR and antibody-mediated activation of neutrophils and monocytes. INTERPRETATION: Our findings suggest that OSP-specific functional IgA responses contribute to protective immunity against Shigella infection in a high-burden setting. These findings will assist in the development and evaluation of Shigella vaccines. FUNDING: US National Institutes of Health.
Assuntos
Anticorpos Antibacterianos , Disenteria Bacilar , Doenças Endêmicas , Shigella sonnei , Humanos , Disenteria Bacilar/imunologia , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/microbiologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Masculino , Shigella sonnei/imunologia , Estudos Retrospectivos , Adulto , Adulto Jovem , Feminino , Peru/epidemiologia , Estados Unidos/epidemiologia , Shigella flexneri/imunologia , AdolescenteRESUMO
Immunity protective against shigella infection targets the bacterial O-specific polysaccharide (OSP) component of lipopolysaccharide. A multivalent shigella vaccine would ideally target the most common global Shigella species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. We previously reported development of shigella conjugate vaccines (SCVs) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using a platform squaric acid chemistry conjugation approach and carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. Here we report development of a SCV targeting S. flexneri 6 (SCV-Sf6) using the same platform approach. We demonstrated that SCV-Sf6 was recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG and IgM responses, as well as rTTHc-specific IgG responses. Immune responses were increased when administered with aluminum phosphate adjuvant. Vaccination induced bactericidal antibody responses against S. flexneri 6, and vaccinated animals were protected against lethal challenge with virulent S. flexneri 6. Our results assist in the development of a multivalent vaccine protective against shigellosis.
Assuntos
Anticorpos Antibacterianos , Disenteria Bacilar , Imunoglobulina G , Antígenos O , Vacinas contra Shigella , Shigella flexneri , Vacinas Conjugadas , Shigella flexneri/imunologia , Animais , Vacinas contra Shigella/imunologia , Vacinas contra Shigella/administração & dosagem , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/administração & dosagem , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Antígenos O/imunologia , Feminino , Camundongos Endogâmicos BALB C , Imunoglobulina M/imunologia , Imunoglobulina M/sangue , Sorogrupo , Lipopolissacarídeos/imunologiaRESUMO
Shigellosis is the second leading cause of diarrheal death in children younger than five years of age globally. At present, there is no broadly licensed vaccine against shigella infection. Previous vaccine candidates have failed at providing protection for young children in endemic settings. Improved understanding of correlates of protection against Shigella infection and severe shigellosis in young children living in endemic settings is needed. Here, we applied a functional antibody profiling approach to define Shigella-specific antibody responses in young children versus older individuals with culture-confirmed shigellosis in Bangladesh, a Shigella endemic area. We analyzed Shigella-specific antibody isotypes, FcR binding and antibody-mediated innate immune cell activation in longitudinal serum samples collected at clinical presentation and up to 1 year later. We found that higher initial Shigella O-specific polysaccharide (OSP)-specific and protein-specific IgG and FcγR binding levels correlated with less severe disease regardless of patient age, but that individuals under 5 years of age developed a less prominent class switched, FcR-binding, functional and durable antibody response against both OSP and protein Shigella antigens than older individuals. Focusing on the largest cohort, we found that functional S. flexneri 2a OSP-specific responses were significantly induced only in individuals over age 5 years, and that these responses promoted monocyte phagocytosis and activation. Our findings suggest that in a Shigella endemic region, young children with shigellosis harbor a functional antibody response that fails to maximally activate monocytes; such a response may be important in facilitating subsequent innate cell clearance of Shigella, especially via recruitment and activation of polymorphonuclear cells capable of directly killing Shigella.
RESUMO
There is a need for vaccines effective against shigella infection in young children in resource-limited areas. Protective immunity against shigella infection targets the O-specific polysaccharide (OSP) component of lipopolysaccharide. Inducing immune responses to polysaccharides in young children can be problematic, but high level and durable responses can be induced by presenting polysaccharides conjugated to carrier proteins. An effective shigella vaccine will need to be multivalent, targeting the most common global species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. Here we report the development of shigella conjugate vaccines (SCV) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using squaric acid chemistry to result in single point sun-burst type display of OSP from carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. We confirmed structure and demonstrated that these conjugates were recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG responses, as well as rTTHc-specific IgG responses. Vaccination induced serotype-specific bactericidal antibody responses against S. flexneri, and vaccinated animals were protected against keratoconjunctivitis (Sereny test) and intraperitoneal challenge with virulent S. flexneri 2a and 3a, respectively. Our results support further development of this platform conjugation technology in the development of shigella conjugate vaccines for use in resource-limited settings.
Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Humanos , Criança , Animais , Camundongos , Pré-Escolar , Shigella flexneri , Vacinas Conjugadas , Disenteria Bacilar/prevenção & controle , Lipopolissacarídeos , Antígenos O , Anticorpos Antibacterianos , Imunoglobulina GRESUMO
Cholera caused by Vibrio cholerae O139 emerged in the early 1990s and spread rapidly to 11 Asian countries before receding for unclear reasons. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). V. cholerae O139 also expresses the OSP-capsule. We, therefore, assessed antibody responses targeting V. cholerae O139 OSP, LPS, capsule, and vibriocidal responses in patients in Bangladesh with cholera caused by V. cholerae O139. We compared these responses to those of age-gender-blood group-matched recipients of the bivalent oral cholera vaccine (OCV O1/O139). We found prominent OSP, LPS, and vibriocidal responses in patients, with a high correlation between these responses. OSP responses primarily targeted the terminal tetrasaccharide of OSP. Vaccinees developed OSP, LPS, and vibriocidal antibody responses, but of significantly lower magnitude and responder frequency (RF) than matched patients. We separately analyzed responses in pediatric vaccinees born after V. cholerae O139 had receded in Bangladesh. We found that OSP responses were boosted in children who had previously received a single dose of bivalent OCV 3 yr previously but not in vaccinated immunologically naïve children. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 despite the presence of capsules, that vaccination with bivalent OCV is poorly immunogenic in the short term in immunologically naïve individuals, but that OSP-specific immune responses can be primed by previous exposure, although whether such responses can protect against O139 cholera is uncertain. IMPORTANCE Cholera is a severe dehydrating illness in humans caused by Vibrio cholerae serogroups O1 or O139. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) of V. cholerae LPS. Yet, little is known about immunity to O139 OSP. In this study, we assessed immune responses targeting OSP in patients from an endemic region with cholera caused by V. cholerae O139. We compared these responses to those of the age-gender-blood group-matched recipients of the bivalent oral cholera vaccine. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 and that the OSP responses primarily target the terminal tetrasaccharide of OSP. Our results further suggest that vaccination with the bivalent vaccine is poorly immunogenic in the short term for inducing O139-specific OSP responses in immunologically naïve individuals, but OSP-specific immune responses can be primed by previous exposure or vaccination.
Assuntos
Antígenos de Grupos Sanguíneos , Vacinas contra Cólera , Cólera , Vibrio cholerae O139 , Vibrio cholerae O1 , Humanos , Criança , Cólera/prevenção & controle , Antígenos O , Lipopolissacarídeos , Bangladesh/epidemiologia , Vacinas de Produtos Inativados , Anticorpos Antibacterianos , Imunoglobulina A , Imunoglobulina M , VacinaçãoRESUMO
There is a need for next-generation cholera vaccines that provide high-level and durable protection in young children in cholera-endemic areas. A cholera conjugate vaccine (CCV) is in development to address this need. This vaccine contains the O-specific polysaccharide (OSP) of Vibrio cholerae O1 conjugated via squaric acid chemistry to a recombinant fragment of the tetanus toxin heavy chain (OSP:rTTHc). This vaccine has been shown previously to be immunogenic and protective in mice and found to be safe in a recent preclinical toxicological analysis in rabbits. We took advantage of excess serum samples collected as part of the toxicological study and assessed the immunogenicity of CCV OSP:rTTHc in rabbits. We found that vaccination with CCV induced OSP-, lipopolysaccharide (LPS)-, and rTTHc-specific immune responses in rabbits, that immune responses were functional as assessed by vibriocidal activity, and that immune responses were protective against death in an established virulent challenge assay. CCV OSP:rTTHc immunogenicity in two animal model systems (mice and rabbits) is encouraging and supports further development of this vaccine for evaluation in humans.
Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae O1 , Criança , Coelhos , Humanos , Animais , Camundongos , Pré-Escolar , Cólera/prevenção & controle , Antígenos O , Toxina Tetânica , Vacinas Conjugadas , Imunoglobulina M , Vacinação , Formação de Anticorpos , Modelos Animais de Doenças , Anticorpos Antibacterianos , Toxina da CóleraRESUMO
Shigella is the second leading cause of diarrheal disease-related death in young children in low and middle income countries. The mechanism of protection against shigella infection and disease in endemic areas is uncertain. While historically LPS-specific IgG titers have been associated with protection in endemic settings, emerging deeper immune approaches have recently elucidated a protective role for IpaB-specific antibody responses in a controlled human challenge model in North American volunteers. To deeply interrogate potential correlates of immunity in areas endemic for shigellosis, here we applied a systems approach to analyze the serological response to shigella across endemic and non-endemic populations. Additionally, we analyzed shigella-specific antibody responses over time in the context of endemic resistance or breakthrough infections in a high shigella burden location. Individuals with endemic exposure to shigella possessed broad and functional antibody responses across both glycolipid and protein antigens compared to individuals from non-endemic regions. In high shigella burden settings, elevated levels of OSP-specific FcαR binding antibodies were associated with resistance to shigellosis. OSP-specific FcαR binding IgA found in resistant individuals activated bactericidal neutrophil functions including phagocytosis, degranulation and reactive oxygen species production. Moreover, IgA depletion from resistant serum significantly reduced binding of OSP-specific antibodies to FcαR and antibody mediated activation of neutrophils and monocytes. Overall, our findings suggest that OSP-specific functional IgA responses contribute to protective immunity against shigella infection in high-burden settings. These findings will assist in the development and evaluation of shigella vaccines.
RESUMO
RATIONALE: Neoglycoconjugate vaccines synthesized by the squaric acid spacer method allow single point attachment of the carbohydrate antigen to the protein carrier. However, the localization of the carbohydrate antigen sites of conjugation on the protein carrier has been an elusive task difficult to achieve. METHOD: Covalent attachment of the lactose antigen to the bovine serum albumin (BSA) was prepared by the squaric acid method using a hapten:BSA ratio of 20:1. Different reaction times were used during the conjugation reaction and two different lactose-BSA glycoconjugate vaccines were obtained. The carbohydrate antigen hapten:BSA ratios of these lactose-BSA glycoconjugate vaccines were determined by MALDI-TOF/RTOF-MS and the glycation sites in the neoglycoconjugates were determined using nano-LC/ESI-QqTOF-MS/MS analysis of the trypsin and GluC V8 digests of the conjugates. RESULTS: We have identified a total of 15 glycation sites located on the BSA lysine residues for the neoglycoconjugate vaccine formed with a hapten:BSA ratio of 5.1:1, However, the tryptic and GluC V8 digests of the hapten-BSA glycoconjugate with a hapten:BSA ratio of 19.0:1 allowed identification of 30 glycation sites located on the BSA. These last results seem to indicate that this conjugation results in formation of various glycoforms. CONCLUSIONS: It was observed that the number of identified glycation sites increased when the hapten:BSA ratio of glycoconjugate formation increased, and that the location of the glycation sites appears to be mainly on the outer surface of the BSA carrier molecule which is in line with the assumption that the sterically more accessible lysine residues, namely those located on the outer surface of the BSA, would be conjugated preferentially.