Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
3.
Plant Mol Biol ; 108(3): 257-275, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35050466

RESUMO

KEY MESSAGE: A dehydration-inducible Arabidopsis CIN-like TCP gene, TCP13, acts as a key regulator of plant growth in leaves and roots under dehydration stress conditions. Plants modulate their shape and growth in response to environmental stress. However, regulatory mechanisms underlying the changes in shape and growth under environmental stress remain elusive. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family of transcription factors (TFs) are key regulators for limiting the growth of leaves through negative effect of auxin response. Here, we report that stress-inducible CIN-like TCP13 plays a key role in inducing morphological changes in leaves and growth regulation in leaves and roots that confer dehydration stress tolerance in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing TCP13 (35Spro::TCP13OX) exhibited leaf rolling, and reduced leaf growth under osmotic stress. The 35Spro::TCP13OX transgenic leaves showed decreased water loss from leaves, and enhanced dehydration tolerance compared with their control counterparts. Plants overexpressing a chimeric repressor domain SRDX-fused TCP13 (TCP13pro::TCP13SRDX) showed severely serrated leaves and enhanced root growth. Transcriptome analysis of TCP13pro::TCP13SRDX transgenic plants revealed that TCP13 affects the expression of dehydration- and abscisic acid (ABA)-regulated genes. TCP13 is also required for the expression of dehydration-inducible auxin-regulated genes, INDOLE-3-ACETIC ACID5 (IAA5) and LATERAL ORGAN BOUNDARIES (LOB) DOMAIN 1 (LBD1). Furthermore, tcp13 knockout mutant plants showed ABA-insensitive root growth and reduced dehydration-inducible gene expression. Our findings provide new insight into the molecular mechanism of CIN-like TCP that is involved in both auxin and ABA response under dehydration stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Plantas Geneticamente Modificadas , Plasmídeos , Estresse Fisiológico , Fatores de Transcrição/genética
4.
Rapid Commun Mass Spectrom ; 34(7): e8625, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31658390

RESUMO

RATIONALE: The plant hormone auxin, indole-3-acetic acid, regulates many aspects of plant growth and development. Auxin quantification should offer broad insights into its mechanistic action in plants. However, limited auxin content in plant tissues hampers the establishment of quantification methods without the highest graded instruments or deeply specialized experimental techniques. METHODS: In this study, we detailed optimized conditions for high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (LC/MS). We compared LC/MS conditions, such as columns, mobile phases, parameters of acquisition methods (selective or multiple ion monitoring), dwell times (DTs), and channel numbers, using differentially mixed authentic auxin and its related compounds. We further investigated pretreatment methods through the optimization of auxin recovery and irrelative compound removal from plant tissues prior to the LC/MS analysis. RESULTS: Our LC/MS analysis demonstrated the particular importance of the column, DTs, and channel numbers on detection sensitivity. Our comparative analysis developed optimal pretreatment methods, including the pulverization of plants, concentration of extract through centrifugal evaporation, and removal of irrelative metabolites using liquid-liquid extraction and a spin filter. We injected plant samples into our LC/MS system, quantified auxin and eight related compounds in a single measurement, and determined the auxin increase in an auxin over-producing mutant. CONCLUSIONS: Our practical optimization of LC/MS conditions and pretreatment methods provides detailed experimental processes toward the sensitive quantification of auxin from 10 mg of plant tissue. These processes have not always been clearly documented; therefore, our protocol could broadly contribute to technical advances in plant growth and development research.


Assuntos
Arabidopsis/química , Ácidos Indolacéticos/análise , Reguladores de Crescimento de Plantas/análise , Cromatografia Líquida de Alta Pressão/métodos , Extração Líquido-Líquido/métodos , Sementes/química , Espectrometria de Massas em Tandem/métodos
5.
PLoS Genet ; 13(6): e1006856, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628608

RESUMO

Photoperiod is one of the most reliable environmental cues for plants to regulate flowering timing. In Arabidopsis thaliana, CONSTANS (CO) transcription factor plays a central role in regulating photoperiodic flowering. In contrast to posttranslational regulation of CO protein, still little was known about CO transcriptional regulation. Here we show that the CINCINNATA (CIN) clade of class II TEOSINTE BRANCHED 1/ CYCLOIDEA/ PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR (TCP) proteins act as CO activators. Our yeast one-hybrid analysis revealed that class II CIN-TCPs, including TCP4, bind to the CO promoter. TCP4 induces CO expression around dusk by directly associating with the CO promoter in vivo. In addition, TCP4 binds to another flowering regulator, GIGANTEA (GI), in the nucleus, and induces CO expression in a GI-dependent manner. The physical association of TCP4 with the CO promoter was reduced in the gi mutant, suggesting that GI may enhance the DNA-binding ability of TCP4. Our tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis identified all class II CIN-TCPs as the components of the in vivo TCP4 complex, and the gi mutant did not alter the composition of the TCP4 complex. Taken together, our results demonstrate a novel function of CIN-TCPs as photoperiodic flowering regulators, which may contribute to coordinating plant development with flowering regulation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ritmo Circadiano/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fotoperíodo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas
6.
Plant Physiol ; 175(2): 874-885, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28842549

RESUMO

Sophisticated regulation of gene expression, including microRNAs (miRNAs) and their target genes, is required for leaf differentiation, growth, and senescence. The impact of miR319 and its target TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) genes on leaf development has been extensively investigated, but the redundancies of these gene families often interfere with the evaluation of their function and regulation in the developmental context. Here, we present the genetic evidence of the involvement of the MIR319 and TCP gene families in Arabidopsis (Arabidopsis thaliana) leaf development. Single mutations in MIR319A and MIR319B genes moderately inhibited the formation of leaf serrations, whereas double mutations increased the extent of this inhibition and resulted in the formation of smooth leaves. Mutations in MIR319 and gain-of-function mutations in the TCP4 gene conferred resistance against miR319 and impaired the cotyledon boundary and leaf serration formation. These mutations functionally associated with CUP-SHAPED COTYLEDON genes, which regulate the cotyledon boundary and leaf serration formation. In contrast, loss-of-function mutations in miR319-targeted and nontargeted TCP genes cooperatively induced the formation of serrated leaves in addition to changes in the levels of their downstream gene transcript. Taken together, these findings demonstrate that the MIR319 and TCP gene families underlie robust and multilayer control of leaf development. This study also provides a framework toward future researches on redundant miRNAs and transcription factors in Arabidopsis and crop plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/fisiologia , Mutação com Perda de Função , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Fatores de Transcrição/genética
8.
Plant Cell ; 25(5): 1609-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23709630

RESUMO

The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor WAX INDUCER1/SHINE1 (WIN1/SHN1) regulates the biosynthesis of waxy substances in Arabidopsis thaliana. Here, we show that the MIXTA-like MYB transcription factors MYB106 and MYB16, which regulate epidermal cell morphology, also regulate cuticle development coordinately with WIN1/SHN1 in Arabidopsis and Torenia fournieri. Expression of a MYB106 chimeric repressor fusion (35S:MYB106-SRDX) and knockout/down of MYB106 and MYB16 induced cuticle deficiencies characterized by organ adhesion and reduction of epicuticular wax crystals and cutin nanoridges. A similar organ fusion phenotype was produced by expression of a WIN1/SHN1 chimeric repressor. Conversely, the dominant active form of MYB106 (35S:MYB106-VP16) induced ectopic production of cutin nanoridges and increased expression of WIN1/SHN1 and wax biosynthetic genes. Microarray experiments revealed that MYB106 and WIN1/SHN1 regulate similar sets of genes, predominantly those involved in wax and cutin biosynthesis. Furthermore, WIN1/SHN1 expression was induced by MYB106-VP16 and repressed by MYB106-SRDX. These results indicate that the regulatory cascade of MIXTA-like proteins and WIN1/SHN1 coordinately regulate cutin biosynthesis and wax accumulation. This study reveals an additional key aspect of MIXTA-like protein function and suggests a unique relationship between cuticle development and epidermal cell differentiation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Magnoliopsida/genética , Epiderme Vegetal/genética , Transativadores/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Lipídeos de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Ceras/metabolismo
9.
Plant Physiol ; 162(2): 991-1005, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23629833

RESUMO

Leaf senescence is the final process of leaf development that involves the mobilization of nutrients from old leaves to newly growing tissues. Despite the identification of several transcription factors involved in the regulation of this process, the mechanisms underlying the progression of leaf senescence are largely unknown. Herein, we describe the proteasome-mediated regulation of class II ETHYLENE RESPONSE FACTOR (ERF) transcriptional repressors and involvement of these factors in the progression of leaf senescence in Arabidopsis (Arabidopsis thaliana). Based on previous results showing that the tobacco (Nicotiana tabacum) ERF3 (NtERF3) specifically interacts with a ubiquitin-conjugating enzyme, we examined the stability of NtERF3 in vitro and confirmed its rapid degradation by plant protein extracts. Furthermore, NtERF3 accumulated in plants treated with a proteasome inhibitor. The Arabidopsis class II ERFs AtERF4 and AtERF8 were also regulated by the proteasome and increased with plant aging. Transgenic Arabidopsis plants with enhanced expression of NtERF3, AtERF4, or AtERF8 showed precocious leaf senescence. Our gene expression and chromatin immunoprecipitation analyses suggest that AtERF4 and AtERF8 targeted the EPITHIOSPECIFIER PROTEIN/EPITHIOSPECIFYING SENESCENCE REGULATOR gene and regulated the expression of many genes involved in the progression of leaf senescence. By contrast, an aterf4 aterf8 double mutant exhibited delayed leaf senescence. Our results provide insight into the important role of class II ERFs in the progression of leaf senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Nicotiana/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Arabidopsis/genética , Morte Celular , Enzimas/genética , Regulação da Expressão Gênica de Plantas , Mutação , Folhas de Planta/citologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Repressoras/genética
10.
Plant Cell ; 22(11): 3574-88, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21119060

RESUMO

Coordination of the maintenance of the undifferentiated fate of cells in the shoot meristem and the promotion of cellular differentiation in plant organs is essential for the development of plant shoots. CINCINNATA-like (CIN-like) TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factors are involved in this coordination via the negative regulation of CUP-SHAPED COTYLEDON (CUC) genes, which regulate the formation of shoot meristems and the specification of organ boundaries. However, the molecular mechanism of the action of CIN-like TCPs is poorly understood. We show here that TCP3, a model of CIN-like TCPs of Arabidopsis thaliana, directly activates the expression of genes for miR164, ASYMMETRIC LEAVES1 (AS1), INDOLE-3-ACETIC ACID3/SHORT HYPOCOTYL2 (IAA3/SHY2), and SMALL AUXIN UP RNA (SAUR) proteins. Gain of function of these genes suppressed the formation of shoot meristems and resulted in the fusion of cotyledons, whereas their loss of function induced ectopic expression of CUC genes in leaves. Our results indicate that miR164, AS1, IAA3/SHY2, and SAUR partially but cooperatively suppress the expression of CUC genes. Since CIN-like TCP genes were revealed to act dose dependently in the differentiation of leaves, we propose that evolutionarily diverse CIN-like TCPs have important roles in the signaling pathways that generate different leaf forms, without having any lethal effects on shoots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , MicroRNAs/metabolismo , Morfogênese , Folhas de Planta , Fatores de Transcrição/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
11.
Sci Rep ; 12(1): 10152, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710718

RESUMO

Lignans are widely distributed plant secondary metabolites that have received attention for their benefits to human health. Sesamin is a furofran lignan that is conventionally extracted from Sesamum seeds and shows anti-oxidant and anti-inflammatory activities in the human liver. Sesamin is biosynthesized by the Sesamum-specific enzyme CYP81Q1, and the natural sources of sesamin are annual plants that are at risk from climate change. In contrast, Forsythia species are widely distributed perennial woody plants that highly accumulate the precursor lignan pinoresinol. To sustainably supply sesamin, we developed a transformation method for Forsythia leaf explants and generated transgenic Forsythia plants that heterologously expressed the CYP81Q1 gene. High-performance liquid chromatography (HPLC) and LC-mass spectrometry analyses detected sesamin and its intermediate piperitol in the leaves of two independent transgenic lines of F. intermedia and F. koreana. We also detected the accumulation of sesamin and piperitol in their vegetatively propagated descendants, demonstrating the stable and efficient production of these lignans. These results indicate that CYP81Q1-transgenic Forsythia plants are promising prototypes to produce diverse lignans and provide an important strategy for the cost-effective and scalable production of lignans.


Assuntos
Forsythia , Lignanas , Sesamum , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dioxóis/metabolismo , Forsythia/genética , Forsythia/metabolismo , Humanos , Lignanas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sesamum/metabolismo
12.
Plant Cell Physiol ; 52(7): 1131-41, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21576193

RESUMO

Specific plant species produce unique isoquinoline alkaloids (IQAs); however, the mechanism of their evolution and the regulation of their biosynthesis are largely unknown. We report here the isolation of a novel basic helix-loop-helix protein, CjbHLH1, from IQA-producing Coptis japonica. A BLAST search indicated that CjbHLH1 homologs were only found in plant species that produce IQAs. Transient RNA interference (RNAi) and overexpression of CjbHLH1 in C. japonica protoplasts revealed the activity of CjbHLH1 in transcription of IQA biosynthetic genes, and little activity in the transcription of genes involved in primary metabolism or the stress response. A chromatin immunoprecipitation experiment using CjbHLH1-specific antibodies revealed the direct interaction of CjbHLH1 with promoter sequences of IQA biosynthetic genes in vivo. We discuss the unique role of CjbHLH1 in IQA biosynthesis.


Assuntos
Alcaloides/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Coptis/metabolismo , Isoquinolinas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Berberina/metabolismo , Coptis/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Dados de Sequência Molecular , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA de Plantas/genética , Transcrição Gênica
13.
Biosci Biotechnol Biochem ; 74(10): 2145-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20944404

RESUMO

We clarified important roles of Arabidopsis TCP1, a member of the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factors, in the longitudinal elongation of petioles, rosette leaves and inflorescent stems. We found that the promoter of TCP1 was active in the cotyledonary petioles and the distal part of the expanding leaves, as well as the midrib region and the petiole.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Inativação Gênica , Folhas de Planta/genética , Fatores de Transcrição/genética
16.
Plant Cell Physiol ; 50(12): 2133-45, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19880401

RESUMO

Lateral organ traits in higher plants, such as lamina shape and trichome distribution, change gradually in association with shoot maturation. Regulation of this shoot maturation process in the vegetative phase has been extensively investigated, and members of the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box family of transcription factors have been shown to be involved in this process. However, little is known about the regulation of shoot maturation in the reproductive phase. We analyzed SPL10, SPL11 and SPL2, which are closely related members of the SBP-box family in Arabidopsis. While cauline leaves had oblong lamina and few trichomes emerged on cauline leaves and flowers in wild-type plants, transgenic plants expressing a dominant repressor version of SPL10/11/2 had wide cauline leaves and many trichomes on their cauline leaves and flowers. These traits were similar to those observed at an earlier reproductive phase in wild-type plants. Loss-of-function mutants for spl10/11/2 showed similar phenotypes, indicating that SPL10, SPL11 and SPL2 redundantly control proper development of lateral organs in association with shoot maturation in the reproductive phase. In the vegetative phase, lamina shape was affected in SPL10 transgenic plants, while trichome distribution was not altered. This suggests partial regulation of shoot development in the vegetative phase by SPL10. Meanwhile, the wide cauline leaves observed in the transgenic plants and the mutants were similar to those of fruitfull (ful) mutants. We found that FUL expression in leaves increased with shoot maturation and changed in SPL10 transgenic plants. FUL may function in shoot maturation under the control of SBP-box proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , MicroRNAs/metabolismo , Brotos de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Fatores de Transcrição/genética
17.
Sci Rep ; 9(1): 8631, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201340

RESUMO

Sesamin is a furofuran-type lignan that is found abundantly in seeds of Sesamum indicum (sesame) and has been widely accepted as a dietary supplement with positive effects on human health. The biological activity of sesamin in human cells and organs has been analysed extensively, although comparatively few studies show biological functions for sesamin in planta. Herein we screened sesamin-binding proteins (SBP) from sesame seedling extracts using sesamin-immobilized nano-beads. In subsequent peptide mass fingerprinting analyses, we identified a SBP, Steroleosin B, which is one of the membrane proteins found in oil bodies. In addition, pull-down assays and saturation transfer difference-nuclear magnetic resonance (STD-NMR) experiments demonstrated that sesamin binds directly to recombinant Steroleosin B in vitro. Finally, ectopic accumulations of sesamin and Steroleosin B in transgenic Arabidopsis thaliana plants induced severe growth defects including suppression of leaf expansion and root elongation. Collectively, these results indicate that sesamin influences tissue development in the presence of Steroleosin B.


Assuntos
Proteínas de Transporte/metabolismo , Dioxóis/metabolismo , Lignanas/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Dioxóis/química , Germinação , Lignanas/química , Plantas Geneticamente Modificadas , Espectroscopia de Prótons por Ressonância Magnética , Sementes/crescimento & desenvolvimento
18.
Plant Sci ; 276: 105-110, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348308

RESUMO

Leaf senescence is the final step of leaf development and is usually accompanied by visible color changes from green to yellow or brown. Unlike the senescence of the whole body of animals and unicellular organisms, which is often associated with death, leaf senescence in plants requires highly integrative processes towards cell death with nutrient recycling and storage. Since leaf senescence plays pivotal roles in the production of plant biomass and grain yield, the mechanisms of degradation and relocation of macromolecules as well as the regulation of signaling and biosynthetic pathways have received much attention. The importance of the plant hormone ethylene in the onset of leaf senescence has been clearly documented. However, research has increasingly demonstrated that the function of ethylene in the regulation of leaf senescence is dependent on leaf development. This review raises the issue of how ethylene requires developmental regulators and focuses on the developmental aspect of leaf senescence. It also emphasizes the remarkable impact that developmental regulators have on regulating the onset of leaf senescence.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Transdução de Sinais , Morte Celular , MicroRNAs/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA de Plantas/genética , Fatores de Tempo
19.
Plant Biotechnol (Tokyo) ; 35(1): 87-91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31275041

RESUMO

Plants grow under threats of environmental changes that could injure cellular viability and damage whole-plant physiology. To defend themselves against such threats, plants induce protective responses, including the production of defense molecules. The red/purple pigment anthocyanin is synthesized upon leaf and fruit development as well as environmental stimuli such as excess light exposure. Therefore, the anthocyanin biosynthesis is considered as a model signaling pathway of the integration of developmental and environmental responses. This integration is tightly regulated by transcription factors, but the integrative mode of these signaling pathways has received little attention. In this study, using an Arabidopsis mutant with mutation in two ETHYLENE RESPONSE FACTOR (ERF) genes, AtERF4 and AtERF8, we investigated the regulatory signaling pathway that leads to the production of anthocyanin in response to light. We detected the accumulation of anthocyanin in detached leaves after incubation on water under light illumination and intact leaves after being transferred into the strong light condition, suggesting that the photoinhibition mediated the production of anthocyanin. Our results demonstrated that the erf mutant decreased the rate and extent of the production of anthocyanin in association with changes of the transcript levels of anthocyanin-biosynthetic genes. As these ERF genes are known regulators of leaf senescence-the final stage of leaf development-we provide an insight into the ERF-mediated integration of two regulatory pathways of the light response and developmental age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA