Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445836

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) is an abundant glycoprotein in the subretinal space bound by the photoreceptor (PR) outer segments and the processes of the retinal pigmented epithelium (RPE). IRBP binds retinoids, including 11-cis-retinal and all-trans-retinol. In this study, visual function for demanding visual tasks was assessed in IRBP knock-out (KO) mice. Surprisingly, IRBP KO mice showed no differences in scotopic critical flicker frequency (CFF) compared to wildtype (WT). However, they did have lower photopic CFF than WT. IRBP KO mice had reduced scotopic and photopic acuity and contrast sensitivity compared to WT. IRBP KO mice had a significant reduction in outer nuclear layer (ONL) thickness, PR outer and inner segment, and full retinal thickness (FRT) compared to WT. There were fewer cones in IRBP KO mice. Overall, these results confirm substantial loss of rods and significant loss of cones within 30 days. Absence of IRBP resulted in cone circuit damage, reducing photopic flicker, contrast sensitivity, and spatial frequency sensitivity. The c-wave was reduced and accelerated in response to bright steps of light. This result also suggests altered retinal pigment epithelium activity. There appears to be a compensatory mechanism such as higher synaptic gain between PRs and bipolar cells since the loss of the b-wave did not linearly follow the loss of rods, or the a-wave. Scotopic CFF is normal despite thinning of ONL and reduced scotopic electroretinogram (ERG) in IRBP KO mice, suggesting either a redundancy or plasticity in circuits detecting (encoding) scotopic flicker at threshold even with substantial rod loss.


Assuntos
Proteínas do Olho , Visão Noturna , Retina , Proteínas de Ligação ao Retinol , Retina/fisiologia , Retina/ultraestrutura , Estimulação Luminosa , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/fisiologia , Camundongos Knockout , Animais , Camundongos , Fusão Flicker/genética , Fusão Flicker/fisiologia , Visão de Cores/genética , Visão de Cores/fisiologia , Acuidade Visual/genética , Acuidade Visual/fisiologia , Visão Noturna/genética , Visão Noturna/fisiologia , Tomografia de Coerência Óptica , Masculino , Feminino
2.
Exp Eye Res ; 219: 109039, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339475

RESUMO

Scleral crosslinking using genipin has been identified as a promising treatment approach for myopia control. The efficacy of genipin to alter biomechanical properties of the sclera has been shown in several animal models of myopia but its safety profile remains unclear. In this safety study, we aim to investigate the effect of scleral crosslinking using retrobulbar injections of genipin on retinal structure and function at genipin doses that were shown to be effective in slowing myopia progression in juvenile tree shrews. To this end, three or five retrobulbar injections of genipin at 0 mM (sham), 10 mM, or 20 mM were performed in one eye every other day. Form deprivation myopia was induced in the injected eye. We evaluated retinal function using full-field electroretinography and retinal structure using in vivo optical coherence tomography imaging and ex vivo histology. The optical coherence tomography results revealed significant thinning of the peripapillary retinal nerve fiber layer in all genipin treated groups including the lowest dose group, which showed no significant treatment effect in slowing myopia progression. In contrast, inducing form deprivation myopia alone and in combination with sham injections caused no obvious thinning of the retinal nerve fiber layer. Electroretinography results showed a significant desensitizing shift of the b-wave semi-saturation constant in the sham group and the second highest genipin dose group, and a significant reduction in b-wave maxima in the two highest genipin dose groups. The ex vivo histology revealed noticeable degeneration of photoreceptors and retinal pigment epithelium in one of two investigated eyes of the highest genipin dose group. While scleral crosslinking using genipin may still be a feasible treatment option for myopia control, our results suggest that repeated retrobulbar injections of genipin at 10 mM or higher are not safe in tree shrews. An adequate and sustained delivery strategy of genipin at lower concentrations will be needed to achieve a safe and effective scleral crosslinking treatment for myopia control in tree shrews. Caution should be taken if the proposed treatment approach is translated to humans.


Assuntos
Miopia , Esclera , Animais , Iridoides/farmacologia , Esclera/patologia , Tupaiidae
3.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456959

RESUMO

The full-field ERG is useful for index rod- or cone-mediated retinal function in rodent models of retinal degeneration. However, the relationship between the ERG response amplitudes and visually guided behavior, such as flicker detection, is not well understood. A comparison of ERG to behavioral responses in a light-damage model of retinal degeneration allows us to better understand the functional implications of electrophysiological changes. Flicker-ERG and behavioral responses to flicker were used to determine critical flicker frequency (CFF) under scotopic and photopic conditions before and up to 90 d after a 10-day period of low-intensity light damage. Dark- and light-adapted ERG flash responses were significantly reduced after light damage. The a-wave was permanently reduced, while the b-wave amplitude recovered over three weeks after light damage. There was a small, but significant dip in scotopic ERG CFF. Photopic behavioral CFF was slightly lower following light damage. The recovery of the b-wave amplitude and flicker sensitivity demonstrates the plasticity of retinal circuits following photopic injury.


Assuntos
Visão de Cores , Degeneração Retiniana , Animais , Aves , Eletrorretinografia , Estimulação Luminosa , Ratos , Retina/fisiologia , Degeneração Retiniana/etiologia
4.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409336

RESUMO

We investigated the etiology of decreased cone-driven vision in a light damage (LD) model of retinal degeneration. To induce slow, moderate degeneration, albino rats underwent low-intensity light exposure for 10 days. Electroretinography was utilized to assess physiologic function of the rod- and cone-driven retinal function in LD and control rats. Immunohistochemistry targeting cone arrestin allowed for quantification of cone density and for comparison of the decline in function. Photoreceptor loss was quantified by outer nuclear layer thickness decreases, as observed by optical coherence tomography and histology. The LD rats showed decreased rod- and cone-driven function with partial recovery 30 days after cessation of light exposure. In addition, LD rats showed decreased cone photoreceptor densities in the central retinal region compared to control rats. Our results demonstrate that the loss of cone-driven visual function induced by light damage is at least partially due to the death of cone photoreceptors.


Assuntos
Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Animais , Eletrorretinografia , Ratos , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica
5.
Adv Exp Med Biol ; 1074: 145-150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721938

RESUMO

A visual response to flickering light requires complex retinal computation, and thus ERG measures are an excellent test of retinal circuit fidelity. Critical flicker frequency (CFF) is the frequency at which the retinal response is no longer modulated. Traditionally, CFF is obtained with a series of steady flicker stimuli with increasing frequencies. However, this method is slow and susceptible to experimental drift and/or adaptational effects. The current study compares the steady flicker method to CFF measurements obtained using a frequency sweep protocol. We introduce a light source programmed to produce a linear sweep of frequencies in a single trial. Using the traditional steady flicker method and a criterion response of 3 µV, we obtained a scotopic CFF of 18.4 ± 0.66 Hz and a photopic CFF of 44.4 ± 1.67 Hz. Our sweep flicker method, used on the same animals, produces a waveform best analyzed by Fourier transform; wherein a 6.18 log µV2 threshold was found to yield CFF values equal to those of the steady flicker method. Thus, the two flicker ERG techniques give comparable results, under both dark- and light-adapted conditions, and the flicker sweep method is faster to administer and analyze and may be less susceptible to blinking, breathing, and eye movement artifacts.


Assuntos
Visão de Cores/fisiologia , Adaptação à Escuridão/fisiologia , Eletrorretinografia/métodos , Fusão Flicker , Visão Noturna/fisiologia , Animais , Feminino , Análise de Fourier , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Eur J Neurosci ; 45(8): 1102-1110, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28244152

RESUMO

Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase that regulates mammalian circadian rhythms at the behavioral, molecular and neurophysiological levels. In the central circadian pacemaker, the suprachiasmatic nucleus (SCN), inhibitory phosphorylation of GSK3 exhibits a rhythm across the 24 h day. We have recently shown that GSK3 is capable of influencing both the molecular clock and SCN neuronal activity rhythms. However, it is not known whether GSK3 regulates the response to environmental cues such as light. The goal of this study was to test the hypothesis that GSK3 activation mediates light-induced SCN excitability and photic entrainment. Immunofluorescence staining in the SCN of mice showed that late-night light exposure significantly increased GSK3 activity (decreased pGSK3ß levels) 30-60 min after the light-pulse. In addition, pharmacological inhibition of GSK3 blocked the expected light-induced excitability in SCN neurons; however, this effect was not associated with changes in resting membrane potential or input resistance. Behaviorally, mice with constitutively active GSK3 (GSK3-KI) re-entrained to a 6-h phase advance in the light-dark cycle in significantly fewer days than WT control animals. Furthermore, the behavioral and SCN neuronal activity of GSK3-KI mice was phase-advanced compared to WT, in both normal and light-exposed conditions. Finally, GSK3-KI mice exhibited normal negative-masking behavior and electroretinographic responses to light, suggesting that the enhanced photic entrainment is not due to an overall increased sensitivity to light in these animals. Taken together, these results provide strong evidence that GSK3 activation contributes to light-induced phase-resetting at both the neurophysiological and behavioral levels.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Transdução de Sinal Luminoso/fisiologia , Neurônios/enzimologia , Núcleo Supraquiasmático/enzimologia , Potenciais de Ação/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Feminino , Quinase 3 da Glicogênio Sintase/genética , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Fotoperíodo , Retina/fisiologia , Técnicas de Cultura de Tecidos
8.
J Physiol ; 594(7): 1841-54, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26691896

RESUMO

KEY POINTS: We propose that the end product of chromophore bleaching in rod photoreceptors, all-trans retinol, is part of a feedback loop that increases the sensitivity of the phototransduction cascade in rods. A previously described light-induced hypersensitivity in rods, termed adaptive potentiation, is reduced by exogenously applied all-trans retinol but not all-trans retinal. This potentiation is produced by insulin-like growth factor-1, whose binding proteins are located in the extracellular matrix, even in our isolated retina preparation after removal of the retinal pigmented epithelium. Simple modelling suggests that the light stimuli used in the present study will produce sufficient all-trans retinol within the interphotoreceptor matrix to explain the potentiation effect. ABSTRACT: Photoreceptors translate the absorption of photons into electrical signals for propagation through the visual system. Mammalian photoreceptor signalling has largely been studied in isolated cells, and such studies have necessarily avoided the complex environment of supportive proteins that surround the photoreceptors. The interphotoreceptor matrix (IPM) contains an array of proteins that aid in both structural maintenance and cellular homeostasis, including chromophore turnover. In signalling photon absorption, the chromophore 11-cis retinal is first isomerized to all-trans retinal, followed by conversion to all-trans retinol (ROL) for removal from the photoreceptor. Interphotoreceptor retinoid-binding protein (IRBP) is the most abundant protein in the IPM, and it promotes the removal of bleached chromophores and recycling in the nearby retinal pigment epithelium. By studying the light responses of isolated mouse retinas, we demonstrate that ROL can act as a feedback signal onto photoreceptors that influences the sensitivity of phototransduction. In addition to IRBP, the IPM also contains insulin-like growth factor-1 (IGF-1) and its associated binding proteins, although their functions have not yet been described. We demonstrate that extracellular application of physiological concentrations of IGF-1 can increase rod photoreceptor sensitivity in mammalian retinas. We also determine that chromophores and growth factors can limit the range of a newly described form of photoreceptor light adaptation. Finally, fluorescent antibodies demonstrate the presence of IRBP and IGFBP-3 in isolated retinas. A simple model of the formation and release of ROL into the extracellular space quantitatively describes this novel feedback loop.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Fótons , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Limiar Sensorial , Visão Ocular , Vitamina A/metabolismo , Absorção de Radiação , Animais , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas do Olho/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Proteínas de Ligação ao Retinol/metabolismo
9.
Mol Vis ; 22: 674-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375353

RESUMO

PURPOSE: To examine the predictions of alternative models for the stochastic shut-off of activated rhodopsin (R*) and their implications for the interpretation of experimentally recorded single-photon responses (SPRs) in mammalian rods. THEORY: We analyze the transitions that an activated R* molecule undergoes as a result of successive phosphorylation steps and arrestin binding. We consider certain simplifying cases for the relative magnitudes of the reaction rate constants and derive the probability distributions for the time to arrestin binding. In addition to the conventional model in which R* catalytic activity declines in a graded manner with successive phosphorylations, we analyze two cases in which the activity is assumed to occur not via multiple small steps upon each phosphorylation but via a single large step. We refer to these latter two cases as the binary R* shut-off and three-state R* shut-off models. METHODS: We simulate R*'s stochastic reactions numerically for the three models. In the simplifying cases for the ratio of rate constants in the binary and three-state models, we show that the probability distribution of the time to arrestin binding is accurately predicted. To simulate SPRs, we then integrate the differential equations for the downstream reactions using a standard model of the rod outer segment that includes longitudinal diffusion of cGMP and Ca(2+). RESULTS: Our simulations of SPRs in the conventional model of graded shut-off of R* conform closely to the simulations in a recent study. However, the gain factor required to account for the observed mean SPR amplitude is higher than can be accounted for from biochemical experiments. In addition, a substantial minority of the simulated SPRs exhibit features that have not been reported in published experiments. Our simulations of SPRs using the model of binary R* shut-off appear to conform closely to experimental results for wild type (WT) mouse rods, and the required gain factor conforms to biochemical expectations. However, for the arrestin knockout (Arr(-/-)) phenotype, the predictions deviated from experimental findings and led us to invoke a low-activity state that R* enters before arrestin binding. Our simulations of this three-state R* shut-off model are very similar to those of the binary model in the WT case but are preferred because they appear to accurately predict the mean SPRs for four mutant phenotypes, Arr(+/-), Arr(-/-), GRK1(+/-), and GRK1(-/-), in addition to the WT phenotype. When we additionally treated the formation and shut-off of activated phosphodiesterase (E*) as stochastic, the simulated SPRs appeared even more similar to real SPRs, and there was very little change in the ensemble mean and standard deviation or in the amplitude distribution. CONCLUSIONS: We conclude that the conventional model of graded reduction in R* activity through successive phosphorylation steps appears to be inconsistent with experimental results. Instead, we find that two variants of a model in which R* activity initially remains high and then declines abruptly after several phosphorylation steps appears capable of providing a better description of experimentally measured SPRs.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo , Visão Ocular/fisiologia , Animais , Arrestina/metabolismo , Humanos , Luz , Camundongos , Modelos Biológicos , Fosforilação , Estimulação Luminosa
10.
Drug Metab Dispos ; 42(5): 947-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24553382

RESUMO

Sulfotransferase (SULT) 4A1 is an orphan enzyme that shares distinct structure and sequence similarities with other cytosolic SULTs. SULT4A1 is primarily expressed in neuronal tissue and is also the most conserved SULT, having been identified in every vertebrate investigated to date. Certain haplotypes of the SULT4A1 gene are correlated with higher baseline psychopathology in schizophrenic patients, but no substrate or function for SULT4A1 has yet been identified despite its high level of sequence conservation. In this study, deep RNA sequencing was used to search for alterations in gene expression in 72-hour postfertilization zebrafish larvae following transient SULT4A1 knockdown (KD) utilizing splice blocking morpholino oligonucleotides. This study demonstrates that transient inhibition of SULT4A1 expression in developing zebrafish larvae results in the up-regulation of several genes involved in phototransduction. SULT4A1 KD was verified by immunoblot analysis and quantitative real-time polymerase chain reaction (qPCR). Gene regulation changes identified by deep RNA sequencing were validated by qPCR. This study is the first identification of a cellular process whose regulation appears to be associated with SULT4A1 expression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinal Luminoso/genética , Sulfotransferases/fisiologia , Transcriptoma , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/embriologia , Encéfalo/metabolismo , Olho/embriologia , Olho/metabolismo , Fertilização , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Larva , Dados de Sequência Molecular , Morfolinos/farmacologia , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Sulfotransferases/genética , Regulação para Cima , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
11.
Cell Commun Signal ; 12: 67, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25323447

RESUMO

BACKGROUND: The rod photoreceptor cGMP-gated cation channel, consisting of three α- and one ß subunit, controls ion flow into the rod outer segment (ROS). In addition to the ß-subunit, the Cngb1 locus encodes an abundant soluble protein, GARP2 that binds stoichiometrically to rod photoreceptor cGMP phosphodiesterase type 6 (PDE6). To examine the in vivo functional role of GARP2 we generated opsin promoter-driven transgenic mice overexpressing GARP2 three-fold specifically in rod photoreceptors. RESULTS: In the GARP2 overexpressing transgenic mice (tg), the endogenous channel ß-subunit, cGMP phosphodiesterase α-subunit, peripherin2/RDS and guanylate cyclase I were present at WT levels and were properly localized within the ROS. While localized properly within ROS, two proteins cGMP phosphodiesterase α-subunit (1.4-fold) and cGMP-gated cation channel α-subunit (1.2-fold) were moderately, but significantly elevated. Normal stratification of all retinal layers was observed, and ROS were stable in numbers but were 19% shorter than WT. Analysis of the photoresponse using electroretinography (ERG) showed that tg mice exhibit no change in sensitivity indicating overall normal rod function, however two parameters of the photoresponse significantly differed from WT responses. Fitting of the rising phase of the ERG a-wave to an accepted model of phototransduction showed a two-fold increase in phototransduction gain in the tg mice. The increase in gain was confirmed in isolated retinal tissue and by suction electrode recordings of individual rod photoreceptor cells. A measure of response recovery, the dominant time constant (τD) was elevated 69% in isolated retina compared to WT, indicating slower shutoff of the photoresponse. CONCLUSIONS: GARP2 may participate in regulating visual signal transduction through a previously unappreciated role in regulating phototransduction gain and recovery.


Assuntos
Proteínas de Membrana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Eletrorretinografia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
12.
Cell Death Dis ; 14(7): 420, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443173

RESUMO

Retinitis pigmentosa (RP) defines a group of hereditary progressive rod-cone degenerations that exhibit a common phenotype caused by variants in over 70 genes. While most variants in the dehydrodolichyl diphosphate synthase (DHDDS) gene result in syndromic abnormalities, some variants cause non-syndromic RP (RP59). DHDDS encodes one subunit of the enzyme cis-prenyltransferase (CPT), which is required for the synthesis of dolichol (Dol), that is a necessary protein glycosylation cofactor. We previously reported the creation and initial characterization of a knock-in (KI) mouse model harboring the most prevalent RP59-associated DHDDS variant (K42E) to understand how defects in DHDDS lead to retina-specific pathology. This model exhibited no profound retinal degeneration, nor protein N-glycosylation defects. Here, we report that the Dol isoprenylogue species in retina, liver, and brain of the K42E mouse model are statistically shorter than in the corresponding tissues of age-matched controls, as reported in blood and urine of RP59 patients. Retinal transcriptome analysis demonstrated elevation of many genes encoding proteins involved in synaptogenesis and synaptic function. Quantitative retinal cell layer thickness measurements demonstrated a significant reduction in the inner nuclear layer (INL) and total retinal thickness (TRT) beginning at postnatal (PN) ∼2 months, progressively increasing to PN 18-mo. Histological analysis revealed cell loss in the INL, outer plexiform layer (OPL) disruption, and ectopic localization of outer nuclear layer (ONL) nuclei into the OPL of K42E mutant retinas, relative to controls. Electroretinograms (ERGs) of mutant mice exhibited reduced b-wave amplitudes beginning at PN 1-mo, progressively declining through PN 18-mo, without appreciable a-wave attenuation, relative to controls. Our results suggest that the underlying cause of DHDDS K42E variant driven RP59 retinal pathology is defective synaptic transmission from outer to inner retina.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Camundongos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Retinose Pigmentar/metabolismo , Eletrorretinografia , Transmissão Sináptica
13.
Opt Express ; 20(7): 7646-54, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453443

RESUMO

Functional measurement is important for retinal study and disease diagnosis. Transient intrinsic optical signal (IOS) response, tightly correlated with functional stimulation, has been previously detected in normal retinas. In this paper, comparative IOS imaging of wild-type (WT) and rod-degenerated mutant mouse retinas is reported. Both 2-month and 1-year-old mice were measured. In 2-month-old mutant mice, time course and peak value of the stimulus-evoked IOS were significantly delayed (relative to stimulus onset) and reduced, respectively, compared to age matched WT mice. In 1-year-old mutant mice, stimulus-evoked IOS was totally absent. However, enhanced spontaneous IOS responses, which might reflect inner neural remodeling in diseased retina, were observed in both 2-month and 1-year-old mutant retinas. Our experiments demonstrate the potential of using IOS imaging for noninvasive and high resolution identification of disease-associated retinal dysfunctions. Moreover, high spatiotemporal resolution IOS imaging may also lead to advanced understanding of disease-associated neural remodeling in the retina.


Assuntos
Potenciais Evocados Visuais , Doenças Retinianas/diagnóstico , Doenças Retinianas/fisiopatologia , Neurônios Retinianos , Retinoscópios , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Camundongos Knockout , Mutação
14.
Doc Ophthalmol ; 124(3): 163-75, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22367173

RESUMO

The rod photoreceptor cGMP-gated cation channel has an essential role in phototransduction functioning as the primary point for calcium and sodium entry into the rod outer segment. The channel consists of two subunits, α and ß. The α-subunit can function in isolation as an ion channel, and the ß-subunit modulates channel activity and has a structural role. We previously reported that a mouse knockout (KO) of the ß-subunit and related glutamic acid-rich proteins (GARPs) attenuates rod function and causes structural alterations and slowly progressive retinal degeneration. Here, we have extended our functional analyses of the KO mice evaluating rod and cone function using the electroretinogram in mice up to 4 months of age. Retinal stratification is preserved in the knockout mice at 3 months, and a significant number of cones remain up to 7 months based on PNA staining of cone sheaths. Electroretinography of KO mice at 1 month old revealed a diminished dark-adapted b-wave and normal light-adapted b-wave compared to wild-type mice. Over the next 3 months, both dark- and light-adapted b-wave amplitudes declined, but the reduction was greater for dark-adapted b-wave amplitudes. In one-month-old mice, the critical flicker frequency (CFF) was substantially lower for the KO mice at scotopic intensities, but normal at photopic intensities. CFF values remained stable in the KO mice as the b-wave amplitudes decreased with age. Declining b-wave amplitudes confirm an RP phenotype of rod followed by cone degeneration. Flicker responses show that the cone circuits function normally at threshold despite significant losses in the maximum light-adapted b-wave amplitude. These results confirm that rods are marginally functional in the absence of the ß-subunit and in addition show that CFF may be a more sensitive measure of remaining functional cone vision in animal models of RP undergoing progressive rod-cone degeneration.


Assuntos
Envelhecimento/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Sobrevivência Celular , Visão de Cores , Adaptação à Escuridão , Eletrorretinografia , Fusão Flicker , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Visão Noturna , Estimulação Luminosa
15.
Adv Exp Med Biol ; 664: 263-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20238025

RESUMO

While there are over 100 distinct mutations in the rhodopsin gene that are found in patients with the degenerative disease autosomal dominant retinitis pigmentosa (ADRP), there are only four known mutations in the rhodopsin gene found in patients with the dysfunction congenital stationary night blindness (CSNB). CSNB patients have a much less severe phenotype than those with ADRP; the patients only lose rod function which affects their vision under dim light conditions, whereas their cone function remains relatively unchanged. The known rhodopsin CSNB mutations are found clustered around the site of retinal attachment. Two of the mutations encode replacements of neutral amino acids with negatively charged ones (A292E and G90D), and the remaining two are neutral amino acid replacements (T94I and A295V). All four of these mutations have been shown to constitutively activate the apoprotein in vitro. The mechanisms by which these mutations lead to night blindness are still not known with certainty, and remain the subject of some controversy. The dominant nature of these genetic defects, as well as the relative normalcy of vision in individuals with half the complement of wild type rhodopsin, suggest that it is an active property of the mutant opsin proteins that leads to defective rod vision rather than a loss of some needed function. Herein, we review the known biochemical and electrophysiological data for the four known rhodopsin mutations found in patients with CSNB.


Assuntos
Mutação/genética , Miopia/genética , Cegueira Noturna/genética , Animais , Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
16.
Open Biol ; 10(1): 190241, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910741

RESUMO

We develop an improved quantitative model of mammalian rod phototransduction, and we apply it to the prediction of responses to bright flashes of light. We take account of the recently characterized dimeric nature of PDE6 activation, where the configuration of primary importance has two transducin molecules bound. We simulate the stochastic nature of the activation and shut-off reactions to generate the predicted kinetics of the active molecular species on the disc membrane surfaces, and then we integrate the differential equations for the downstream cytoplasmic reactions to obtain the predicted electrical responses. The simulated responses recover the qualitative form of bright-flash response families recorded from mammalian rod photoreceptors. Furthermore, they provide an accurate description of the relationship between the time spent in saturation and flash intensity, predicting the transition between first and second 'dominant time constants' to occur at an intensity around 5000 isomerizations per flash, when the rate of transducin activation is taken to be 1250 transducins s-1 per activated rhodopsin. This rate is consistent with estimates from light-scattering experiments, but is around fourfold higher than has typically been assumed in other studies. We conclude that our model and parameters provide a compelling description of rod photoreceptor bright-flash responses.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Transdução de Sinal Luminoso , Luz , Modelos Biológicos , Multimerização Proteica , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Algoritmos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Ativação Enzimática , Mamíferos
17.
Cells ; 9(3)2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245241

RESUMO

Patients with certain defects in the dehydrodolichyl diphosphate synthase (DHDDS) gene (RP59; OMIM #613861) exhibit classic symptoms of retinitis pigmentosa, as well as macular changes, suggestive of retinal pigment epithelium (RPE) involvement. The DHDDS enzyme is ubiquitously required for several pathways of protein glycosylation. We wish to understand the basis for selective ocular pathology associated with certain DHDDS mutations and the contribution of specific ocular cell types to the pathology of mutant Dhdds-mediated retinal degeneration. To circumvent embryonic lethality associated with Dhdds knockout, we generated a Cre-dependent knockout allele of murine Dhdds (Dhddsflx/flx). We used targeted Cre expression to study the importance of the enzyme in the RPE. Structural alterations of the RPE and retina including reduction in outer retinal thickness, cell layer disruption, and increased RPE hyper-reflectivity were apparent at one postnatal month. At three months, RPE and photoreceptor disruption was observed non-uniformly across the retina as well as RPE transmigration into the photoreceptor layer, external limiting membrane descent towards the RPE, and patchy loss of photoreceptors. Functional loss measured by electroretinography was consistent with structural loss showing scotopic a- and b-wave reductions of 83% and 77%, respectively, at three months. These results indicate that RPE dysfunction contributes to DHDDS mutation-mediated pathology and suggests a more complicated disease mechanism than simply disruption of glycosylation.


Assuntos
Alquil e Aril Transferases/metabolismo , Degeneração Retiniana/enzimologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/patologia , Animais , Atrofia , Visão de Cores , Eletrorretinografia , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Visão Noturna , Fenótipo , Células Fotorreceptoras de Vertebrados/patologia , Reprodutibilidade dos Testes , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/fisiopatologia , Epitélio Pigmentado da Retina/ultraestrutura , Tomografia de Coerência Óptica
18.
Open Biol ; 8(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068567

RESUMO

We examine the implications of a recent report providing evidence that two transducins must bind to the rod phosphodiesterase to elicit significant hydrolytic activity. To predict the rod photoreceptor's electrical response, we use numerical simulation of the two-dimensional diffusional contact of interacting molecules at the surface of the disc membrane, and then we use the simulated PDE activity as the driving function for the downstream reaction cascade. The results account for a number of aspects of rod phototransduction that have previously been puzzling. For example, they explain the existence of a greater initial delay in rods than in cones. Furthermore, our analysis suggests that the 'continuous' noise recorded in rods in darkness is likely to arise from spontaneous activation of individual molecules of PDE at a rate of a few tens per second per rod, probably as a consequence of spontaneous activation of transducins at a rate of thousands per second per rod. Hence, the dimeric activation of PDE in rods provides immunity against spontaneous transducin activation, thereby reducing the continuous noise. Our analysis also provides a coherent quantitative explanation of the amplification underlying the single photon response. Overall, numerical analysis of the dimeric activation of PDE places rod phototransduction in a new light.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Transdução de Sinal Luminoso , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Simulação por Computador , Ativação Enzimática , Humanos , Mamíferos , Transducina/metabolismo
20.
J Neurosci ; 23(4): 1287-97, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12598617

RESUMO

Vertebrate cone and rod photoreceptor cells use similar mechanisms to transduce light signals into electrical signals, but their responses to light differ in sensitivity and kinetics. To assess the role of G-protein GTP hydrolysis kinetics in mammalian cone photoresponses, we have characterized photoresponses and GTPase regulatory components of cones and rods from the cone-dominant retina of the eastern chipmunk. Sensitivity, based on the stimulus strength required for a half-maximum response, of the M-cone population was 38-fold lower than that of the rods. The relatively lower cone sensitivity could be attributed in part to lower amplification in the rising phase and in part to faster recovery kinetics. At a molecular level, cloning of chipmunk cDNA and expression of recombinant proteins provided standards for quantitative immunoblot analysis of proteins involved in GTPase acceleration. The ratio of the cGMP-phosphodiesterase inhibitory subunit gamma to cone pigment, 1:68, was similar to the levels observed for ratios to rhodopsin in bovine retina, 1:76, or mouse retina, 1:65. In contrast, the ratio to pigment of the GTPase-accelerating protein RGS9-1 was 1:62, more than 10 times higher than ratios observed in rod-dominant retinas. Immunoprecipitation experiments revealed that, in contrast to rods, RGS9-1 in chipmunk retina is associated with both the short and long isoforms of its partner subunit G(beta5). The much higher levels of the GTPase-accelerating protein complex in cones, compared with rods, suggest a role for GTPase acceleration in obtaining rapid photoresponse kinetics.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/análise , Subunidades beta da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/análise , Proteínas RGS/análise , Células Fotorreceptoras Retinianas Cones/fisiologia , Visão Ocular , 3',5'-GMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/genética , Animais , Clonagem Molecular , Técnicas de Cultura , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Condutividade Elétrica , Imunofluorescência , GTP Fosfo-Hidrolases/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Cinética , Camundongos , Proteínas RGS/genética , Proteínas RGS/metabolismo , Retina/química , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Sciuridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA