Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Adv Mater ; 33(10): e2005647, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33543809

RESUMO

Failure of materials and structures is inherently linked to localized mechanisms, from shear banding in metals, to crack propagation in ceramics and collapse of space-trusses after buckling of individual struts. In lightweight structures, localized deformation causes catastrophic failure, limiting their application to small strain regimes. To ensure robustness under real-world nonlinear loading scenarios, overdesigned linear-elastic constructions are adopted. Here, the concept of delocalized deformation as a pathway to failure-resistant structures and materials is introduced. Space-tileable tensegrity metamaterials achieving delocalized deformation via the discontinuity of their compression members are presented. Unprecedented failure resistance is shown, with up to 25-fold enhancement in deformability and orders of magnitude increased energy absorption capability without failure over same-strength state-of-the-art lattice architectures. This study provides important groundwork for design of superior engineering systems, from reusable impact protection systems to adaptive load-bearing structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA