Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Chem Inf Model ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874541

RESUMO

Discovered in the 1920s, cytochrome bd is a terminal oxidase that has received renewed attention as a drug target since its atomic structure was first determined in 2016. Only found in prokaryotes, we study it here as a drug target for Mycobacterium tuberculosis (Mtb). Most previous drug discovery efforts toward cytochrome bd have involved analogues of the canonical substrate quinone, known as Aurachin D. Here, we report six new cytochrome bd inhibitor scaffolds determined from a computational screen and confirmed on target activity through in vitro testing. These scaffolds provide new avenues for lead optimization toward Mtb therapeutics.

2.
Chembiochem ; 21(7): 1028-1035, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633265

RESUMO

The APOBEC3 (APOBEC3A-H) enzyme family is part of the human innate immune system that restricts pathogens by scrambling pathogenic single-stranded (ss) DNA by deamination of cytosines to produce uracil residues. However, APOBEC3-mediated mutagenesis of viral and cancer DNA promotes its evolution, thus enabling disease progression and the development of drug resistance. Therefore, APOBEC3 inhibition offers a new strategy to complement existing antiviral and anticancer therapies by making such therapies effective for longer periods of time, thereby preventing the emergence of drug resistance. Here, we have synthesised 2'-deoxynucleoside forms of several known inhibitors of cytidine deaminase (CDA), incorporated them into oligodeoxynucleotides (oligos) in place of 2'-deoxycytidine in the preferred substrates of APOBEC3A, APOBEC3B, and APOBEC3G, and evaluated their inhibitory potential against these enzymes. An oligo containing a 5-fluoro-2'-deoxyzebularine (5FdZ) motif exhibited an inhibition constant against APOBEC3B 3.5 times better than that of the comparable 2'-deoxyzebularine-containing (dZ-containing) oligo. A similar inhibition trend was observed for wild-type APOBEC3A. In contrast, use of the 5FdZ motif in an oligo designed for APOBEC3G inhibition resulted in an inhibitor that was less potent than the dZ-containing oligo both in the case of APOBEC3GCTD and in that of full-length wild-type APOBEC3G.


Assuntos
Desaminase APOBEC-3G/metabolismo , Citidina/análogos & derivados , DNA de Cadeia Simples/química , Flúor/química , Desaminase APOBEC-3G/antagonistas & inibidores , Desaminase APOBEC-3G/genética , Sequência de Bases , Citidina/química , DNA de Cadeia Simples/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Compostos Organofosforados/química
3.
Proc Natl Acad Sci U S A ; 114(26): E5122-E5128, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28611213

RESUMO

CRISPR-Cas adaptive immune systems capture DNA fragments from invading bacteriophages and plasmids and integrate them as spacers into bacterial CRISPR arrays. In type I-E and II-A CRISPR-Cas systems, this adaptation process is driven by Cas1-Cas2 complexes. Type I-F systems, however, contain a unique fusion of Cas2, with the type I effector helicase and nuclease for invader destruction, Cas3. By using biochemical, structural, and biophysical methods, we present a structural model of the 400-kDa Cas14-Cas2-32 complex from Pectobacterium atrosepticum with bound protospacer substrate DNA. Two Cas1 dimers assemble on a Cas2 domain dimeric core, which is flanked by two Cas3 domains forming a groove where the protospacer binds to Cas1-Cas2. We developed a sensitive in vitro assay and demonstrated that Cas1-Cas2-3 catalyzed spacer integration into CRISPR arrays. The integrase domain of Cas1 was necessary, whereas integration was independent of the helicase or nuclease activities of Cas3. Integration required at least partially duplex protospacers with free 3'-OH groups, and leader-proximal integration was stimulated by integration host factor. In a coupled capture and integration assay, Cas1-Cas2-3 processed and integrated protospacers independent of Cas3 activity. These results provide insight into the structure of protospacer-bound type I Cas1-Cas2-3 adaptation complexes and their integration mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/fisiologia , Endonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Pectobacterium/enzimologia , Proteínas de Bactérias/genética , Endonucleases/genética , Complexos Multienzimáticos/genética , Pectobacterium/genética
4.
Mol Microbiol ; 107(2): 198-213, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134701

RESUMO

Glutamate racemase (MurI) has been proposed as a target for anti-tuberculosis drug development based on the inability of ΔmurI mutants of Mycobacterium smegmatis to grow in the absence of d-glutamate. In this communication, we identify ΔmurI suppressor mutants that are detected during prolonged incubation. Whole genome sequencing of these ΔmurI suppressor mutants identified the presence of a SNP, located in the promoter region of MSMEG_5795. RT-qPCR and transcriptional fusion analyses revealed that the ΔmurI suppressor mutant overexpressed MSMEG_5795 14-fold compared to the isogenic wild-type. MSMEG_5795, which is annotated as 4-amino-4-deoxychorismate lyase (ADCL) but which also has homology to d-amino acid transaminase (d-AAT), was expressed, purified and found to have d-AAT activity and to be capable of producing d-glutamate from d-alanine. Consistent with its d-amino acid transaminase function, overexpressed MSMEG_5795 is able to complement both ΔmurI deletion mutants and alanine racemase (Δalr) deletion mutants, thus confirming a multifunctional role for this enzyme in M. smegmatis.


Assuntos
Isomerases de Aminoácido/metabolismo , D-Alanina Transaminase/metabolismo , Mycobacterium smegmatis/enzimologia , Oxo-Ácido-Liases/metabolismo , Alanina/metabolismo , Alanina Racemase/genética , Alanina Racemase/metabolismo , Isomerases de Aminoácido/genética , Sequência de Bases/genética , D-Alanina Transaminase/química , D-Alanina Transaminase/genética , Deleção de Genes , Ácido Glutâmico/metabolismo , Mycobacterium smegmatis/genética , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/genética , Regiões Promotoras Genéticas , Supressão Genética , Sequenciamento Completo do Genoma
5.
J Biol Chem ; 292(17): 7233-7243, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28258219

RESUMO

Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.


Assuntos
Prolina/química , Pirrolina Carboxilato Redutases/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Cinética , Ligantes , Mutação , NADP/química , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Ultracentrifugação , delta-1-Pirrolina-5-Carboxilato Redutase
6.
Artigo em Inglês | MEDLINE | ID: mdl-28971867

RESUMO

A screening of more than 1,500 drug-resistant strains of Mycobacterium tuberculosis revealed evolutionary patterns characteristic of positive selection for three alanine racemase (Alr) mutations. We investigated these mutations using molecular modeling, in vitro MIC testing, as well as direct measurements of enzymatic activity, which demonstrated that these mutations likely confer resistance to d-cycloserine.


Assuntos
Alanina Racemase/genética , Proteínas de Bactérias/genética , Ciclosserina/farmacologia , Farmacorresistência Bacteriana/genética , Mutação , Mycobacterium tuberculosis/genética , Alanina Racemase/metabolismo , Antibióticos Antituberculose/farmacologia , Proteínas de Bactérias/metabolismo , Evolução Molecular , Expressão Gênica , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Filogenia , Seleção Genética
7.
Biochem J ; 473(9): 1267-80, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26964898

RESUMO

Glutamate racemase (MurI) is responsible for providing D-glutamate for peptidoglycan biosynthesis in bacteria and has been a favoured target in pharmaceutical drug design efforts. It has recently been proven to be essential in Mycobacterium tuberculosis, the causative organism of tuberculosis, a disease for which new medications are urgently needed. In the present study, we have determined the protein crystal structures of MurI from both M. tuberculosis and Mycobacterium smegmatis in complex with D-glutamate to 2.3 Å and 1.8 Å resolution respectively. These structures are conserved, but reveal differences in their active site architecture compared with that of other MurI structures. Furthermore, compounds designed to target other glutamate racemases have been screened but do not inhibit mycobacterial MurI, suggesting that a new drug design effort will be needed to develop inhibitors. A new type of MurI dimer arrangement has been observed in both structures, and this arrangement becomes the third biological dimer geometry for MurI found to date. The mycobacterial MurI dimer is tightly associated, with a KD in the nanomolar range. The enzyme binds D- and L-glutamate specifically, but is inactive in solution unless the dimer interface is mutated. We created triple mutants of this interface in the M. smegmatis glutamate racemase (D26R/R105A/G194R or E) that have appreciable activity (kcat=0.056-0.160 min(-1) and KM=0.26-0.51 mM) and can be utilized to screen proposed antimicrobial candidates for inhibition.


Assuntos
Isomerases de Aminoácido/química , Proteínas de Bactérias/química , Ácido Glutâmico/química , Mycobacterium tuberculosis/enzimologia , Isomerases de Aminoácido/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Mutação de Sentido Incorreto , Mycobacterium tuberculosis/genética , Domínios Proteicos
8.
Biochem J ; 473(8): 1063-72, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929403

RESUMO

CRISPR-Cas systems are adaptive immune systems in prokaryotes that provide protection against viruses and other foreign DNA. In the adaptation stage, foreign DNA is integrated into CRISPR (clustered regularly interspaced short palindromic repeat) arrays as new spacers. These spacers are used in the interference stage to guide effector CRISPR associated (Cas) protein(s) to target complementary foreign invading DNA. Cas1 is the integrase enzyme that is central to the catalysis of spacer integration. There are many diverse types of CRISPR-Cas systems, including type I-F systems, which are typified by a unique Cas1-Cas2-3 adaptation complex. In the present study we characterize the Cas1 protein of the potato phytopathogen Pectobacterium atrosepticum, an important model organism for understanding spacer acquisition in type I-F CRISPR-Cas systems. We demonstrate by mutagenesis that Cas1 is essential for adaptation in vivo and requires a conserved aspartic acid residue. By X-ray crystallography, we show that although P. atrosepticum Cas1 adopts a fold conserved among other Cas1 proteins, it possesses remarkable asymmetry as a result of structural plasticity. In particular, we resolve for the first time a flexible, asymmetric loop that may be unique to type I-F Cas1 proteins, and we discuss the implications of these structural features for DNA binding and enzymatic activity.


Assuntos
Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cristalização , Cristalografia por Raios X , Pectobacterium/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
9.
BMC Genomics ; 16: 825, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26486607

RESUMO

BACKGROUND: The New Zealand glowworm is the larva of a carnivorous fungus gnat that produces bioluminescence to attract prey. The bioluminescent system of the glowworm is evolutionarily distinct from other well-characterised systems, especially that of the fireflies, and the molecules involved have not yet been identified. We have used high throughput sequencing technology to produce a transcriptome for the glowworm and identify transcripts encoding proteins that are likely to be involved in glowworm bioluminescence. RESULTS: Here we report the sequencing and annotation of the first transcriptome of the glowworm, and a differential analysis of expression from the glowworm light organ compared with non-light organ tissue. The analysis identified six transcripts encoding proteins that are potentially involved in glowworm bioluminescence. Three of these proteins are members of the ANL superfamily of adenylating enzymes, with similar amino acid sequences to that of the luciferase enzyme found in fireflies (31 to 37 % identical), and are candidate luciferases for the glowworm bioluminescent system. The remaining three transcripts encode putative aminoacylase, phosphatidylethanolamine-binding and glutathione S-transferase proteins. CONCLUSIONS: This research provides a basis for further biochemical studies into how the glowworm produces light, and a source of genetic information to aid future ecological and evolutionary studies of the glowworm.


Assuntos
Dípteros/genética , Luciferases/genética , Proteínas Luminescentes/genética , Filogenia , Animais , Dípteros/embriologia , Glutationa Transferase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Luz , Luciferases/biossíntese , Proteínas Luminescentes/biossíntese , Nova Zelândia , RNA/genética , Transcriptoma/genética
10.
J Bacteriol ; 196(24): 4239-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25246478

RESUMO

The mycobacterial cell wall frequently has been used as a target for drug development, and d-glutamate, synthesized by glutamate racemase (MurI), is an important component of peptidoglycan. While the essentiality of the murI gene has been shown in several bacterial species, including Escherichia coli, Bacillus anthracis, and Streptococcus pneumoniae, studies in mycobacteria have not yet provided definitive results. This study aimed to determine whether murI is indeed essential and can serve as a possible target for structure-aided drug design. We have achieved this goal by creating a ΔmurI strain of Mycobacterium smegmatis, a close relative of Mycobacterium tuberculosis. The deletion of the murI gene in M. smegmatis could be achieved only in minimal medium supplemented with D-glutamate, demonstrating that MurI is essential for growth and that glutamate racemase is the only source of D-glutamate for peptidoglycan synthesis in M. smegmatis.


Assuntos
Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Genes Essenciais , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Parede Celular/metabolismo , Meios de Cultura/química , Deleção de Genes , Ácido Glutâmico/metabolismo , Mycobacterium smegmatis/genética , Peptidoglicano/metabolismo
11.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 439-450, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832828

RESUMO

The expansive scientific software ecosystem, characterized by millions of titles across various platforms and formats, poses significant challenges in maintaining reproducibility and provenance in scientific research. The diversity of independently developed applications, evolving versions and heterogeneous components highlights the need for rigorous methodologies to navigate these complexities. In response to these challenges, the SBGrid team builds, installs and configures over 530 specialized software applications for use in the on-premises and cloud-based computing environments of SBGrid Consortium members. To address the intricacies of supporting this diverse application collection, the team has developed the Capsule Software Execution Environment, generally referred to as Capsules. Capsules rely on a collection of programmatically generated bash scripts that work together to isolate the runtime environment of one application from all other applications, thereby providing a transparent cross-platform solution without requiring specialized tools or elevated account privileges for researchers. Capsules facilitate modular, secure software distribution while maintaining a centralized, conflict-free environment. The SBGrid platform, which combines Capsules with the SBGrid collection of structural biology applications, aligns with FAIR goals by enhancing the findability, accessibility, interoperability and reusability of scientific software, ensuring seamless functionality across diverse computing environments. Its adaptability enables application beyond structural biology into other scientific fields.


Assuntos
Software , Biologia Computacional/métodos
12.
PeerJ ; 11: e14969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974140

RESUMO

Ribosome-targeting antibiotics comprise over half of antibiotics used in medicine, but our fundamental knowledge of their binding sites is derived primarily from ribosome structures of non-pathogenic species. These include Thermus thermophilus, Deinococcus radiodurans and the archaean Haloarcula marismortui, as well as the commensal and sometimes pathogenic organism, Escherichia coli. Advancements in electron cryomicroscopy have allowed for the determination of more ribosome structures from pathogenic bacteria, with each study highlighting species-specific differences that had not been observed in the non-pathogenic structures. These observed differences suggest that more novel ribosome structures, particularly from pathogens, are required for a more accurate understanding of the level of diversity of the entire bacterial ribosome, with the potential of leading to innovative advancements in antibiotic research. In this study, high accuracy covariance and hidden Markov models were used to annotate ribosomal RNA and protein sequences respectively from genomic sequence, allowing us to determine the underlying ribosomal sequence diversity using phylogenetic methods. This analysis provided evidence that the current non-pathogenic ribosome structures are not sufficient representatives of some pathogenic bacteria, such as Campylobacter pylori, or of whole phyla such as Bacteroidota (Bacteroidetes).


Assuntos
RNA , Ribossomos , RNA/análise , Filogenia , Ribossomos/genética , Antibacterianos/análise , Escherichia coli/genética , Bactérias/genética , Análise de Sequência de Proteína
13.
Viruses ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38005879

RESUMO

Norovirus is the leading cause of viral gastroenteritis worldwide, and there are no approved vaccines or therapeutic treatments for chronic or severe norovirus infections. The structural characterisation of the norovirus protease and drug development has predominantly focused upon GI.1 noroviruses, despite most global outbreaks being caused by GII.4 noroviruses. Here, we determined the crystal structures of the GII.4 Sydney 2012 ligand-free norovirus protease at 2.79 Å and at 1.83 Å with a covalently bound high-affinity (IC50 = 0.37 µM) protease inhibitor (NV-004). We show that the active sites of the ligand-free protease structure are present in both open and closed conformations, as determined by their Arg112 side chain orientation. A comparative analysis of the ligand-free and ligand-bound protease structures reveals significant structural differences in the active site cleft and substrate-binding pockets when an inhibitor is covalently bound. We also report a second molecule of NV-004 non-covalently bound within the S4 substrate binding pocket via hydrophobic contacts and a water-mediated hydrogen bond. These new insights can guide structure-aided drug design against the GII.4 genogroup of noroviruses.


Assuntos
Fármacos Anti-HIV , Infecções por Caliciviridae , Norovirus , Humanos , Peptídeo Hidrolases/metabolismo , Norovirus/metabolismo , Endopeptidases/metabolismo , Domínio Catalítico , Fármacos Anti-HIV/metabolismo , Genótipo , Filogenia
14.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 1): 82-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22194336

RESUMO

Staphylococcus aureus is an opportunistic Gram-positive bacterium which causes a wide variety of diseases ranging from minor skin infections to potentially fatal conditions such as pneumonia, meningitis and septicaemia. The pathogen is a leading cause of nosocomial acquired infections, a problem that is exacerbated by the existence of methicillin- and glycopeptide antibiotic-resistant strains which can be challenging to treat. Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent enzyme which catalyzes reversible racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell-wall peptidoglycan, inhibition of Alr is lethal to prokaryotes. Additionally, while ubiquitous amongst bacteria, this enzyme is absent in humans and most eukaryotes, making it an excellent antibiotic drug target. The crystal structure of S. aureus alanine racemase (Alr(Sas)), the sequence of which corresponds to that from the highly antibiotic-resistant Mu50 strain, has been solved to 2.15 Å resolution. Comparison of the Alr(Sas) structure with those of various alanine racemases demonstrates a conserved overall fold, with the enzyme sharing most similarity to those from other Gram-positive bacteria. Structural examination indicates that the active-site binding pocket, dimer interface and active-site entryway of the enzyme are potential targets for structure-aided inhibitor design. Kinetic constants were calculated in this study and are reported here. The potential for a disulfide bond in this structure is noted. This structural and biochemical information provides a template for future structure-based drug-development efforts targeting Alr(Sas).


Assuntos
Alanina Racemase/química , Staphylococcus aureus/enzimologia , Alanina Racemase/isolamento & purificação , Sequência de Aminoácidos , Sequência Conservada , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
15.
ACS Med Chem Lett ; 13(10): 1663-1669, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36262396

RESUMO

A revised total synthesis of aurachin D (1a), an isoprenoid quinolone alkaloid that targets Mycobacterium tuberculosis (Mtb) cytochrome bd (cyt-bd) oxidase, was accomplished using an oxazoline ring-opening reaction. The ring opening enabled access to a range of electron-poor analogues, while electron-rich analogues could be prepared using the Conrad-Limpach reaction. The aryl-substituted and side-chain-modified aurachin D analogues were screened for inhibition of Mtb cyt-bd oxidase and growth inhibition of Mtb. Nanomolar inhibition of Mtb cyt-bd oxidase was observed for the shorter-chain analogue 1d (citronellyl side chain) and the aryl-substituted analogues 1g/1k (fluoro substituent at C6/C7), 1t/1v (hydroxy substituent at C5/C6) and 1u/1w/1x (methoxy substituent at C5/C6/C7). Aurachin D and the analogues did not inhibit growth of nonpathogenic Mycobacterium smegmatis, but the citronellyl (1d) and 6-fluoro-substituted (1g) inhibitors from the Mtb cyt-bd oxidase assay displayed moderate growth inhibition against pathogenic Mtb (MIC = 4-8 µM).

16.
Viruses ; 14(9)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36146779

RESUMO

APOBEC3 enzymes are polynucleotide deaminases, converting cytosine to uracil on single-stranded DNA (ssDNA) and RNA as part of the innate immune response against viruses and retrotransposons. APOBEC3G is a two-domain protein that restricts HIV. Although X-ray single-crystal structures of individual catalytic domains of APOBEC3G with ssDNA as well as full-length APOBEC3G have been solved recently, there is little structural information available about ssDNA interaction with the full-length APOBEC3G or any other two-domain APOBEC3. Here, we investigated the solution-state structures of full-length APOBEC3G with and without a 40-mer modified ssDNA by small-angle X-ray scattering (SAXS), using size-exclusion chromatography (SEC) immediately prior to irradiation to effect partial separation of multi-component mixtures. To prevent cytosine deamination, the target 2'-deoxycytidine embedded in 40-mer ssDNA was replaced by 2'-deoxyzebularine, which is known to inhibit APOBEC3A, APOBEC3B and APOBEC3G when incorporated into short ssDNA oligomers. Full-length APOBEC3G without ssDNA comprised multiple multimeric species, of which tetramer was the most scattering species. The structure of the tetramer was elucidated. Dimeric interfaces significantly occlude the DNA-binding interface, whereas the tetrameric interface does not. This explains why dimers completely disappeared, and monomeric protein species became dominant, when ssDNA was added. Data analysis of the monomeric species revealed a full-length APOBEC3G-ssDNA complex that gives insight into the observed "jumping" behavior revealed in studies of enzyme processivity. This solution-state SAXS study provides the first structural model of ssDNA binding both domains of APOBEC3G and provides data to guide further structural and enzymatic work on APOBEC3-ssDNA complexes.


Assuntos
DNA de Cadeia Simples , Retroelementos , Desaminase APOBEC-3G/metabolismo , Citidina Desaminase , Citosina , Desoxicitidina , Polinucleotídeos , Ligação Proteica , Proteínas , RNA/metabolismo , Espalhamento a Baixo Ângulo , Uracila , Difração de Raios X , Raios X
17.
BMC Microbiol ; 11: 116, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21612658

RESUMO

BACKGROUND: Streptococcus pneumoniae is a globally important pathogen. The Gram-positive diplococcus is a leading cause of pneumonia, otitis media, bacteremia, and meningitis, and antibiotic resistant strains have become increasingly common over recent years. Alanine racemase is a ubiquitous enzyme among bacteria and provides the essential cell wall precursor, D-alanine. Since it is absent in humans, this enzyme is an attractive target for the development of drugs against S. pneumoniae and other bacterial pathogens. RESULTS: Here we report the crystal structure of alanine racemase from S. pneumoniae (AlrSP). Crystals diffracted to a resolution of 2.0 Å and belong to the space group P3121 with the unit cell parameters a = b = 119.97 Å, c = 118.10 Å, α = ß = 90° and γ = 120°. Structural comparisons show that AlrSP shares both an overall fold and key active site residues with other bacterial alanine racemases. The active site cavity is similar to other Gram positive alanine racemases, featuring a restricted but conserved entryway. CONCLUSIONS: We have solved the structure of AlrSP, an essential step towards the development of an accurate pharmacophore model of the enzyme, and an important contribution towards our on-going alanine racemase structure-based drug design project. We have identified three regions on the enzyme that could be targeted for inhibitor design, the active site, the dimer interface, and the active site entryway.


Assuntos
Alanina Racemase/química , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Streptococcus pneumoniae/química
18.
Viruses ; 13(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34696342

RESUMO

At the end of 2019 a newly emerged betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of severe pneumonia, subsequently termed COVID-19, in a number of patients in Wuhan, China. Subsequently, SARS-CoV-2 rapidly spread globally, resulting in a pandemic that has to date infected over 200 million individuals and resulted in more than 4.3 million deaths. While SARS-CoV-2 results in severe disease in 13.8%, with increasing frequency of severe disease with age, over 80% of infections are asymptomatic or mild. The immune response is an important determinant of outcome following SARS-CoV-2 infection. While B cell and T cell responses are associated with control of infection and protection against subsequent challenge with SARS-CoV-2, failure to control viral replication and the resulting hyperinflammation are associated with severe COVID-19. Towards the end of 2020, several variants of concern emerged that demonstrate increased transmissibility and/or evasion of immune responses from prior SARS-CoV-2 infection. This article reviews what is known about the humoral and cellular immune responses to SARS-CoV-2 and how mutation and structural/functional changes in the emerging variants of concern impact upon the immune protection from prior infection or vaccination.


Assuntos
COVID-19/imunologia , Imunidade/imunologia , SARS-CoV-2/imunologia , Humanos , Pandemias/prevenção & controle
19.
Viruses ; 13(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34696326

RESUMO

Influenza virus is a highly contagious virus that causes significant human mortality and morbidity annually. The most effective drugs for treating influenza are the neuraminidase inhibitors, but resistance to these inhibitors has emerged, and additional drug discovery research on neuraminidase and other targets is needed. Traditional methods of neuraminidase production from embryonated eggs are cumbersome, while insect cell derived protein is less reflective of neuraminidase produced during human infection. Herein we describe a method for producing neuraminidase from a human cell line, HEK293-6E, and demonstrate the method by producing the neuraminidase from the 1918 H1N1 pandemic influenza strain. This method produced high levels of soluble neuraminidase expression (>3000 EU/mL), was enhanced by including a secretion signal from a viral chemokine binding protein, and does not require co-expression of additional proteins. The neuraminidase produced was of sufficient quantity and purity to support high resolution crystal structure determination. The structure solved using this protein conformed to the previously reported structure. Notably the glycosylation at three asparagine residues was superior in quality to that from insect cell derived neuraminidase. This method of production of neuraminidase should prove useful in further studies, such as the characterisation of inhibitor binding.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Neuraminidase/genética , Farmacorresistência Viral , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Influenza Humana/tratamento farmacológico , Conformação Molecular , Ligação Proteica , Proteínas Virais/metabolismo
20.
Nat Commun ; 12(1): 5236, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475399

RESUMO

New drugs are urgently needed to combat the global TB epidemic. Targeting simultaneously multiple respiratory enzyme complexes of Mycobacterium tuberculosis is regarded as one of the most effective treatment options to shorten drug administration regimes, and reduce the opportunity for the emergence of drug resistance. During infection and proliferation, the cytochrome bd oxidase plays a crucial role for mycobacterial pathophysiology by maintaining aerobic respiration at limited oxygen concentrations. Here, we present the cryo-EM structure of the cytochrome bd oxidase from M. tuberculosis at 2.5 Å. In conjunction with atomistic molecular dynamics (MD) simulation studies we discovered a previously unknown MK-9-binding site, as well as a unique disulfide bond within the Q-loop domain that defines an inactive conformation of the canonical quinol oxidation site in Actinobacteria. Our detailed insights into the long-sought atomic framework of the cytochrome bd oxidase from M. tuberculosis will form the basis for the design of highly specific drugs to act on this enzyme.


Assuntos
Grupo dos Citocromos b/química , Grupo dos Citocromos d/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/química , Sítios de Ligação , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Oxirredutases/química , Conformação Proteica , Subunidades Proteicas , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA