Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nat Immunol ; 22(8): 1042-1051, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267375

RESUMO

Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.


Assuntos
Adenoviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Interleucina-33/imunologia , Ativação Linfocitária/imunologia , Células Estromais/imunologia , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Quimiocina CCL19/metabolismo , Quimera/genética , Epitopos de Linfócito T/imunologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos/imunologia , Humanos , Pulmão/citologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação
2.
Nature ; 615(7950): 151-157, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36509106

RESUMO

In the past decade, single-cell transcriptomics has helped to uncover new cell types and states and led to the construction of a cellular compendium of health and disease. Despite this progress, some difficult-to-sequence cells remain absent from tissue atlases. Eosinophils-elusive granulocytes that are implicated in a plethora of human pathologies1-5-are among these uncharted cell types. The heterogeneity of eosinophils and the gene programs that underpin their pleiotropic functions remain poorly understood. Here we provide a comprehensive single-cell transcriptomic profiling of mouse eosinophils. We identify an active and a basal population of intestinal eosinophils, which differ in their transcriptome, surface proteome and spatial localization. By means of a genome-wide CRISPR inhibition screen and functional assays, we reveal a mechanism by which interleukin-33 (IL-33) and interferon-γ (IFNγ) induce the accumulation of active eosinophils in the inflamed colon. Active eosinophils are endowed with bactericidal and T cell regulatory activity, and express the co-stimulatory molecules CD80 and PD-L1. Notably, active eosinophils are enriched in the lamina propria of a small cohort of patients with inflammatory bowel disease, and are closely associated with CD4+ T cells. Our findings provide insights into the biology of eosinophils and highlight the crucial contribution of this cell type to intestinal homeostasis, immune regulation and host defence. Furthermore, we lay a framework for the characterization of eosinophils in human gastrointestinal diseases.


Assuntos
Colite , Eosinófilos , Imunidade , Intestinos , Animais , Humanos , Camundongos , Colite/imunologia , Colite/patologia , Eosinófilos/classificação , Eosinófilos/citologia , Eosinófilos/imunologia , Eosinófilos/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Análise da Expressão Gênica de Célula Única , Transcriptoma , Proteoma , Interleucina-33 , Interferon gama , Linfócitos T , Antígeno B7-1/metabolismo , Intestinos/imunologia , Intestinos/patologia
3.
J Immunol ; 210(6): 774-785, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36715496

RESUMO

Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1ß and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.


Assuntos
Infecções por Coronavirus , Interferon Tipo I , Vírus da Hepatite Murina , Pneumonia , Animais , Camundongos , Imunidade Inata , Antivirais/farmacologia , Replicação Viral
4.
Eur J Immunol ; 53(12): e2350446, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742135

RESUMO

Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Imunoterapia , Imunidade Inata , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Inositol Polifosfato 5-Fosfatases/metabolismo
5.
Eur J Immunol ; 53(2): e2249940, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250419

RESUMO

Primary and recurrent cytomegalovirus (CMV) infections frequently cause CMV colitis in immunocompromised as well as inflammatory bowel disease (IBD) patients. Additionally, colitis occasionally occurs upon primary CMV infection in patients who are apparently immunocompetent. In both cases, the underlying pathophysiologic mechanisms are largely elusive - in part due to the lack of adequate access to specimens. We employed the mouse cytomegalovirus (MCMV) model to assess the association between CMV and colitis. During acute primary MCMV infection of immunocompetent mice, the gut microbial composition was affected as manifested by an altered ratio of the Firmicutes to Bacteroidetes phyla. Interestingly, these microbial changes coincided with high-titer MCMV replication in the colon, crypt hyperplasia, increased colonic pro-inflammatory cytokine levels, and a transient increase in the expression of the antimicrobial protein Regenerating islet-derived protein 3 gamma (Reg3γ). Further analyses revealed that murine and human intestinal epithelial cell lines, as well as primary intestinal crypt cells and organoids represent direct targets of CMV infection causing increased cell death. Accordingly, in vivo MCMV infection disrupted the intestinal epithelial barrier and increased apoptosis of intestinal epithelial cells. In summary, our data show that CMV transiently induces colitis in immunocompetent hosts by altering the intestinal homeostasis.


Assuntos
Colite , Infecções por Citomegalovirus , Microbioma Gastrointestinal , Muromegalovirus , Humanos , Animais , Camundongos , Citomegalovirus , Células Epiteliais/metabolismo
6.
Development ; 147(21)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32253237

RESUMO

Cleft lip is one of the most common human birth defects. However, there remain a limited number of mouse models of cleft lip that can be leveraged to characterize the genes and mechanisms that cause this disorder. Crosstalk between epithelial and mesenchymal cells underlies formation of the face and palate, but the basic molecular events mediating this crosstalk remain poorly understood. We previously demonstrated that mice lacking the epithelial-specific splicing factor Esrp1 have fully penetrant bilateral cleft lip and palate. In this study, we further investigated the mechanisms leading to cleft lip as well as cleft palate in both existing and new Esrp1 mutant mouse models. These studies included a detailed transcriptomic analysis of changes in ectoderm and mesenchyme in Esrp1-/- embryos during face formation. We identified altered expression of genes previously implicated in cleft lip and/or palate, including components of multiple signaling pathways. These findings provide the foundation for detailed investigations using Esrp1 mutant disease models to examine gene regulatory networks and pathways that are essential for normal face and palate development - the disruption of which leads to orofacial clefting in human patients.


Assuntos
Fenda Labial/patologia , Fissura Palatina/patologia , Epitélio/patologia , Mesoderma/patologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Processamento Alternativo/genética , Animais , Proliferação de Células , Fenda Labial/embriologia , Fenda Labial/genética , Fissura Palatina/embriologia , Fissura Palatina/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Epitélio/embriologia , Face , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Mesoderma/embriologia , Camundongos Knockout , Organogênese/genética , Palato/embriologia , Palato/patologia
7.
Nat Immunol ; 11(4): 335-43, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20190759

RESUMO

Here we describe a previously unknown form of inherited immunodeficiency revealed by an N-ethyl-N-nitrosourea-induced mutation called elektra. Mice homozygous for this mutation showed enhanced susceptibility to bacterial and viral infection and diminished numbers of T cells and inflammatory monocytes that failed to proliferate after infection and died via the intrinsic apoptotic pathway in response to diverse proliferative stimuli. They also had a greater proportion of T cells poised to replicate DNA, and their T cells expressed a subset of activation markers, suggestive of a semi-activated state. We positionally ascribe the elektra phenotype to a mutation in the gene encoding Schlafen-2 (Slfn2). Our findings identify a physiological role for Slfn2 in the defense against pathogens through the regulation of quiescence in T cells and monocytes.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Leucócitos Mononucleares/imunologia , Linfócitos T/imunologia , Animais , Apoptose/imunologia , Sequência de Bases , Separação Celular , Citometria de Fluxo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Transdução de Sinais/imunologia
8.
Cytokine ; 157: 155961, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35843125

RESUMO

Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.


Assuntos
Interleucina-33 , Neoplasias , Citocinas , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/metabolismo , Microambiente Tumoral
9.
BMC Cancer ; 22(1): 987, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114487

RESUMO

BACKGROUND: Previous assessments of peritumoral inflammatory infiltrate in colorectal cancer (CRC) have focused on the role of CD8+ T lymphocytes. We sought to compare the prognostic value of CD8 with downstream indicators of active immune cell function, specifically granzyme B (GZMB) and CD68 in the tumour microenvironment. METHODS: Immunohistochemical (IHC) staining was performed for CD8, GZMB, CD68 and CD163 on next-generation tissue microarrays (ngTMAs) in a primary cohort (n = 107) and a TNM stage II validation cohort (n = 151). Using digital image analysis, frequency of distinct immune cell types was calculated for tumour proximity (TP) zones with varying radii (10 µm-100 µm) around tumour cells. RESULTS: Associations notably of advanced TNM stage were observed for low density of CD8 (p = 0.002), GZMB (p < 0.001), CD68 (p = 0.034) and CD163 (p = 0.011) in the primary cohort. In the validation cohort only low GZMB (p = 0.036) was associated with pT4 stage. Survival analysis showed strongest prognostic effects in the TP25µm zone at the tumour centre for CD8, GZMB and CD68 (all p < 0.001) in the primary cohort and for CD8 (p = 0.072), GZMB (p = 0.035) and CD68 (p = 0.004) in the validation cohort with inferior prognostic effects observed at the tumour invasive margin. In a multivariate survival analysis, joint analysis of GZMB and CD68 was similarly prognostic to CD8 in the primary cohort (p = 0.007 vs. p = 0.002) and superior to CD8 in the validation cohort (p = 0.005 vs. p = 0.142). CONCLUSION: Combined high expression of GZMB and CD68 within 25 µm to tumour cells is an independent prognostic factor in CRC and of superior prognostic value to the well-established CD8 in TNM stage II cancers. Thus, assessment of antitumoral effect should consider the quality of immune activation in peritumoral inflammatory cells and their actual proximity to tumour cells.


Assuntos
Neoplasias Colorretais , Linfócitos T CD8-Positivos , Contagem de Células , Neoplasias Colorretais/patologia , Granzimas , Humanos , Prognóstico , Microambiente Tumoral
10.
EMBO Rep ; 21(1): e48789, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31742873

RESUMO

The role of death receptor signaling for pathogen control and infection-associated pathogenesis is multifaceted and controversial. Here, we show that during viral infection, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) modulates NK cell activity independently of its pro-apoptotic function. In mice infected with lymphocytic choriomeningitis virus (LCMV), Trail deficiency led to improved specific CD8+ T-cell responses, resulting in faster pathogen clearance and reduced liver pathology. Depletion experiments indicated that this effect was mediated by NK cells. Mechanistically, TRAIL expressed by immune cells positively and dose-dependently modulates IL-15 signaling-induced granzyme B production in NK cells, leading to enhanced NK cell-mediated T cell killing. TRAIL also regulates the signaling downstream of IL-15 receptor in human NK cells. In addition, TRAIL restricts NK1.1-triggered IFNγ production by NK cells. Our study reveals a hitherto unappreciated immunoregulatory role of TRAIL signaling on NK cells for the granzyme B-dependent elimination of antiviral T cells.


Assuntos
Células Matadoras Naturais , Viroses , Animais , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/genética
11.
Proc Natl Acad Sci U S A ; 112(42): E5706-14, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438836

RESUMO

Endoplasmic reticulum (ER)-resident proteins are continually retrieved from the Golgi and returned to the ER by Lys-Asp-Glu-Leu (KDEL) receptors, which bind to an eponymous tetrapeptide motif at their substrate's C terminus. Mice and humans possess three paralogous KDEL receptors, but little is known about their functional redundancy, or if their mutation can be physiologically tolerated. Here, we present a recessive mouse missense allele of the prototypical mammalian KDEL receptor, KDEL ER protein retention receptor 1 (KDELR1). Kdelr1 homozygous mutants were mildly lymphopenic, as were mice with a CRISPR/Cas9-engineered frameshift allele. Lymphopenia was cell intrinsic and, in the case of T cells, was associated with reduced expression of the T-cell receptor (TCR) and increased expression of CD44, and could be partially corrected by an MHC class I-restricted TCR transgene. Antiviral immunity was also compromised, with Kdelr1 mutant mice unable to clear an otherwise self-limiting viral infection. These data reveal a nonredundant cellular function for KDELR1, upon which lymphocytes distinctly depend.


Assuntos
Retículo Endoplasmático/metabolismo , Predisposição Genética para Doença , Linfopenia/genética , Mutação , Receptores de Peptídeos/genética , Viroses/prevenção & controle , Animais , Doença Crônica , Feminino , Masculino , Camundongos , Camundongos Mutantes , Viroses/genética
12.
PLoS Pathog ; 8(9): e1002915, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028315

RESUMO

Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.


Assuntos
Células Dendríticas/imunologia , Ativação Linfocitária , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas de Membrana Transportadoras/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocinas/biossíntese , Citocinas/biossíntese , Células Dendríticas/virologia , Imunidade Inata , Proteínas de Membrana Transportadoras/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Toll-Like/genética , Viremia/imunologia
13.
Proc Natl Acad Sci U S A ; 108(49): 19678-82, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22106289

RESUMO

Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.


Assuntos
Cardiomiopatias/dietoterapia , Dieta Cetogênica , Complexo Mediador/genética , Miopatias Mitocondriais/dietoterapia , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Sequência de Bases , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Expressão Gênica , Genes Letais , Estimativa de Kaplan-Meier , Masculino , Complexo Mediador/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Desmame
14.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388173

RESUMO

Inflammation and skeletal homeostasis are closely intertwined. Inflammatory diseases are associated with local and systemic bone loss, and post-menopausal osteoporosis is linked to low-level chronic inflammation. Phosphoinositide-3-kinase signalling is a pivotal pathway modulating immune responses and controlling skeletal health. Mice deficient in Src homology 2-containing inositol phosphatase 1 (SHIP1), a negative regulator of the phosphoinositide-3-kinase pathway, develop systemic inflammation associated with low body weight, reduced bone mass, and changes in bone microarchitecture. To elucidate the specific role of the immune system in skeletal development, a genetic approach was used to characterise the contribution of SHIP1-controlled systemic inflammation to SHIP1-dependent osteoclastogenesis. Lymphocyte deletion entirely rescued the skeletal phenotype in Rag2 -/- /Il2rg -/- /SHIP1 -/- mice. Rag2 -/- /Il2rg -/- /SHIP1 -/- osteoclasts, however, displayed an intermediate transcriptomic signature between control and Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts while exhibiting aberrant in vitro development and functions similar to Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts. These data establish a cell-intrinsic role for SHIP1 in osteoclasts, with inflammation as the key driver of the skeletal phenotype in SHIP1-deficient mice. Our findings demonstrate the central role of the immune system in steering physiological skeletal development.


Assuntos
Inflamação , Transdução de Sinais , Camundongos , Animais , Inflamação/genética , Transdução de Sinais/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatidilinositóis
15.
Gastroenterology ; 143(2): 418-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22522092

RESUMO

BACKGROUND & AIMS: Invariant natural killer T (iNKT) cells undergo canonical, Vα14-Jα18 rearrangement of the T-cell receptor (TCR) in mice; this form of the TCR recognizes glycolipids presented by CD1d. iNKT cells mediate many different immune reactions. Their constitutive activated and memory phenotype and rapid initiation of effector functions after stimulation indicate previous antigen-specific stimulation. However, little is known about this process. We investigated whether symbiotic microbes can determine the activated phenotype and function of iNKT cells. METHODS: We analyzed the numbers, phenotypes, and functions of iNKT cells in germ-free mice, germ-free mice reconstituted with specified bacteria, and mice housed in specific pathogen-free environments. RESULTS: Specific pathogen-free mice, obtained from different vendors, have different intestinal microbiota. iNKT cells isolated from these mice differed in TCR Vß7 frequency and cytokine response to antigen, which depended on the environment. iNKT cells isolated from germ-free mice had a less mature phenotype and were hyporesponsive to activation with the antigen α-galactosylceramide. Intragastric exposure of germ-free mice to Sphingomonas bacteria, which carry iNKT cell antigens, fully established phenotypic maturity of iNKT cells. In contrast, reconstitution with Escherichia coli, which lack specific antigens for iNKT cells, did not affect the phenotype of iNKT cells. The effects of intestinal microbes on iNKT cell responsiveness did not require Toll-like receptor signals, which can activate iNKT cells independently of TCR stimulation. CONCLUSIONS: Intestinal microbes can affect iNKT cell phenotypes and functions in mice.


Assuntos
Escherichia coli , Galactosilceramidas/imunologia , Intestinos/microbiologia , Ativação Linfocitária , Células T Matadoras Naturais/microbiologia , Sphingomonas , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Citometria de Fluxo , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Vida Livre de Germes , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/química , Organismos Livres de Patógenos Específicos
16.
Blood ; 118(24): 6418-25, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21976678

RESUMO

Iron is an essential component of heme and hemoglobin, and therefore restriction of iron availability directly limits erythropoiesis. In the present study, we report a defect in iron absorption that results in iron-deficiency anemia, as revealed by an N-ethyl-N-nitrosourea-induced mouse phenotype called sublytic. Homozygous sublytic mice develop hypochromic microcytic anemia with reduced osmotic fragility of RBCs. The sublytic phenotype stems from impaired gastrointestinal iron absorption caused by a point mutation of the gastric hydrogen-potassium ATPase α subunit encoded by Atp4a, which results in achlorhydria. The anemia of sublytic homozygotes can be corrected by feeding with a high-iron diet or by parenteral injection of iron dextran; rescue can also be achieved by providing acidified drinking water to sublytic homozygotes. These findings establish the necessity of the gastric proton pump for iron absorption and effective erythropoiesis.


Assuntos
Anemia Ferropriva/etiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Mutação Puntual , Estômago/enzimologia , Acloridria/metabolismo , Acloridria/fisiopatologia , Acloridria/terapia , Substituição de Aminoácidos , Anemia Ferropriva/dietoterapia , Anemia Ferropriva/prevenção & controle , Animais , Modelos Animais de Doenças , Etilnitrosoureia/farmacologia , Feminino , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/genética , Absorção Intestinal , Ferro da Dieta/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênicos/farmacologia , Fragilidade Osmótica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Estômago/patologia
17.
Blood ; 117(24): 6582-8, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21551232

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a rare inflammatory disorder with a poor prognosis for affected individuals. To find a means of suppressing the clinical phenotype, we investigated the cellular and molecular mechanisms leading to HLH in Unc13d(jinx/jinx) mice, in which cytolytic function of NK and CD8(+) T cells is impaired. Unc13d(jinx/jinx) mutants infected with lymphochoriomeningitis virus (LCMV) present typical clinical features of HLH, including splenomegaly, elevated serum IFNγ, and anemia. Proteins mediating cell-cell contact, cytokine signaling or Toll-like receptor (TLR) signaling were analyzed. We show that neither the integrin CD18, which is involved in adhesion between antigen-presenting cells and effector T cells, nor tumor necrosis factor (TNF) made nonredundant contributions to the disease phenotype. Disruption of IFNγ signaling reduced immune cell activation in Unc13d(jinx/jinx) mice, but also resulted in uncontrolled viral proliferation and exaggerated release of inflammatory cytokines. Abrogating the function of myeloid differentiation primary response gene 88 (MyD88) in Unc13d(jinx/jinx) mice suppressed immune cell activation and controlled cytokine production in an IL-1 receptor 1 (IL-1R1)-independent way. Our findings implicate MyD88 as the key initiator of myeloid and lymphoid proliferation in HLH, and suggest that blockade of this signaling molecule may reduce immunopathology in patients.


Assuntos
Linfo-Histiocitose Hemofagocítica/genética , Fator 88 de Diferenciação Mieloide/fisiologia , Animais , Citoproteção/genética , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Predisposição Genética para Doença , Terapia Genética/métodos , Tolerância Imunológica/genética , Tolerância Imunológica/fisiologia , Linfo-Histiocitose Hemofagocítica/metabolismo , Linfo-Histiocitose Hemofagocítica/terapia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
18.
Blood ; 117(10): 2874-82, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21239699

RESUMO

Natural killer (NK) cells are innate immune cells that express members of the leukocyte ß2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that ß2 integrin-deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit(+) cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, ß2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


Assuntos
Antígenos CD18/imunologia , Antígenos CD18/metabolismo , Diferenciação Celular/imunologia , Células Matadoras Naturais/imunologia , Animais , Separação Celular , Citometria de Fluxo , Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/citologia , Camundongos , Muromegalovirus/imunologia
19.
Proc Natl Acad Sci U S A ; 107(21): 9759-64, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20457904

RESUMO

A previously unappreciated signal necessary for dendritic cell (DC)-mediated activation of natural killer (NK) cells during viral infection was revealed by a recessive N-ethyl-N-nitrosourea-induced mutation called warmflash (wmfl). Wmfl homozygotes displayed increased susceptibility to mouse cytomegalovirus (MCMV) infection. In response to MCMV infection in vivo, delayed NK cell activation was observed, but no intrinsic defects in NK cell activation or function were identified. Rather, coculture experiments demonstrated that NK cells are suboptimally activated by wmfl DCs, which showed impaired cytokine production in response to MCMV or synthetic TLR7 and TLR9 ligands. The wmfl mutation was identified in the gene encoding the Fms-like tyrosine kinase 3 (Flt3). Flt3 ligand (Flt3L) is transiently induced in the serum upon infection or TLR activation. However, antibody blockade reveals no acute requirement for Flt3L, suggesting that the Flt3L --> Flt3 axis programs the development of DCs, making them competent to support NK effector function. In the absence of Flt3 signaling, NK cell activation is delayed and survival during MCMV infection is markedly compromised.


Assuntos
Células Dendríticas/imunologia , Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Muromegalovirus/imunologia , Tirosina Quinase 3 Semelhante a fms/imunologia , Animais , Sobrevivência Celular , Células Cultivadas , Células Matadoras Naturais/citologia , Camundongos , Mutação , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/genética
20.
Proc Natl Acad Sci U S A ; 107(7): 3046-51, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133626

RESUMO

Null alleles of the gene encoding NEMO (NF-kappaB essential modulator) are lethal in hemizygous mice and men, whereas hypomorphic alleles typically cause a syndrome of immune deficiency and ectodermal dysplasia. Here we describe an allele of Ikbkg in mice that impaired Toll-like receptor signaling, lymph node formation, development of memory and regulatory T cells, and Ig production, but did not cause ectodermal dysplasia. Degradation of IkappaB alpha, which is considered a primary requirement for NEMO-mediated immune signaling, occurred normally in response to Toll-like receptor stimulation, yet ERK phosphorylation and NF-kappaB p65 nuclear translocation were severely impaired. This selective loss of function highlights the immunological importance of NEMO-regulated pathways beyond IkappaB alpha degradation, and offers a biochemical explanation for rare immune deficiencies in man.


Assuntos
Síndromes de Imunodeficiência/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Transdução de Sinais/genética , Animais , Western Blotting , Citocinas/metabolismo , Etilnitrosoureia , Citometria de Fluxo , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Linfonodos/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese , Óxido Nítrico/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA