Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Genet ; 19(12): e1010865, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150485

RESUMO

Genome size variation, largely driven by repeat content, is poorly understood within and among populations, limiting our understanding of its significance for adaptation. Here we characterize intraspecific variation in genome size and repeat content across 186 individuals of Amaranthus tuberculatus, a ubiquitous native weed that shows flowering time adaptation to climate across its range and in response to agriculture. Sequence-based genome size estimates vary by up to 20% across individuals, consistent with the considerable variability in the abundance of transposable elements, unknown repeats, and rDNAs across individuals. The additive effect of this variation has important phenotypic consequences-individuals with more repeats, and thus larger genomes, show slower flowering times and growth rates. However, compared to newly-characterized gene copy number and polygenic nucleotide changes underlying variation in flowering time, we show that genome size is a marginal contributor. Differences in flowering time are reflected by genome size variation across sexes and marginally, habitats, while polygenic variation and a gene copy number variant within the ATP synthesis pathway show consistently stronger environmental clines than genome size. Repeat content nonetheless shows non-neutral distributions across the genome, and across latitudinal and environmental gradients, demonstrating the numerous governing processes that in turn influence quantitative genetic variation for phenotypes key to plant adaptation.


Assuntos
Amaranthus , Humanos , Amaranthus/genética , Tamanho do Genoma , Adaptação Fisiológica/genética , Clima , Fenótipo
2.
Mol Ecol ; 32(2): 278-280, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440474

RESUMO

Quantifying the impact of human activity on the capacity of populations to persist is paramount to conservation biology, as numerous species and populations have already been driven to or beyond the brink of extinction. Those populations that persist are often a sobering example of the evolutionary power of human-disturbance, such as the loss of tusks in African elephants resulting from ivory harvesting (Campbell-Staton et al., 2021) and rapid life-history evolution in northern Atlantic cod in response to fisheries (Olsen et al., 2004). These evolutionary responses reflect a delicate interplay between demographic and selective processes (e.g., evolutionary rescue: Bell & Gonzalez, 2009; Gomulkiewicz & Holt, 1995), both of which can modify genetic variation for fitness. While quantifying fitness remains a difficult challenge, generalizable insights into the evolutionary consequences of population collapse can be provided in systems with independent demographic shifts in response to human activity. Unfortunately, such was the case for sea otter populations across its range in the 18th and 19th centuries, where the fur-trade had catastrophic, range-wide effects on sea otter (Enhydra lutris) populations. In a From the Cover article in this issue of Molecular Ecology, Beichman et al. (2022) combine a population genomic spatiotemporal data set and theoretical simulations not only to quantify past demographic change in response to sea otter exploitation, but also to understand the consequences of population collapse on species persistence.


Assuntos
Lontras , Animais , Humanos , Lontras/genética , Demografia
3.
Mol Ecol ; 32(24): 6729-6742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873879

RESUMO

Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.


Assuntos
DNA , Museus , DNA/genética , Biologia
4.
Proc Natl Acad Sci U S A ; 116(12): 5665-5674, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833407

RESUMO

In most eukaryotes, organellar genomes are transmitted preferentially by the mother, but molecular mechanisms and evolutionary forces underlying this fundamental biological principle are far from understood. It is believed that biparental inheritance promotes competition between the cytoplasmic organelles and allows the spread of so-called selfish cytoplasmic elements. Those can be, for example, fast-replicating or aggressive chloroplasts (plastids) that are incompatible with the hybrid nuclear genome and therefore maladaptive. Here we show that the ability of plastids to compete against each other is a metabolic phenotype determined by extremely rapidly evolving genes in the plastid genome of the evening primrose Oenothera Repeats in the regulatory region of accD (the plastid-encoded subunit of the acetyl-CoA carboxylase, which catalyzes the first and rate-limiting step of lipid biosynthesis), as well as in ycf2 (a giant reading frame of still unknown function), are responsible for the differences in competitive behavior of plastid genotypes. Polymorphisms in these genes influence lipid synthesis and most likely profiles of the plastid envelope membrane. These in turn determine plastid division and/or turnover rates and hence competitiveness. This work uncovers cytoplasmic drive loci controlling the outcome of biparental chloroplast transmission. Here, they define the mode of chloroplast inheritance, as plastid competitiveness can result in uniparental inheritance (through elimination of the "weak" plastid) or biparental inheritance (when two similarly "strong" plastids are transmitted).


Assuntos
Cloroplastos/genética , Cloroplastos/fisiologia , Oenothera biennis/metabolismo , Acetil-CoA Carboxilase/genética , Evolução Biológica , Núcleo Celular/genética , Citoplasma/genética , Eucariotos/genética , Genoma , Genomas de Plastídeos/genética , Genótipo , Lipídeos/biossíntese , Oenothera biennis/fisiologia , Proteínas de Plantas/genética , Plastídeos/genética
5.
Proc Natl Acad Sci U S A ; 116(42): 21076-21084, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570613

RESUMO

The selection pressure exerted by herbicides has led to the repeated evolution of herbicide resistance in weeds. The evolution of herbicide resistance on contemporary timescales in turn provides an outstanding opportunity to investigate key questions about the genetics of adaptation, in particular the relative importance of adaptation from new mutations, standing genetic variation, or geographic spread of adaptive alleles through gene flow. Glyphosate-resistant Amaranthus tuberculatus poses one of the most significant threats to crop yields in the Midwestern United States, with both agricultural populations and herbicide resistance only recently emerging in Canada. To understand the evolutionary mechanisms driving the spread of resistance, we sequenced and assembled the A. tuberculatus genome and investigated the origins and population genomics of 163 resequenced glyphosate-resistant and susceptible individuals from Canada and the United States. In Canada, we discovered multiple modes of convergent evolution: in one locality, resistance appears to have evolved through introductions of preadapted US genotypes, while in another, there is evidence for the independent evolution of resistance on genomic backgrounds that are historically nonagricultural. Moreover, resistance on these local, nonagricultural backgrounds appears to have occurred predominantly through the partial sweep of a single haplotype. In contrast, resistant haplotypes arising from the Midwestern United States show multiple amplification haplotypes segregating both between and within populations. Therefore, while the remarkable species-wide diversity of A. tuberculatus has facilitated geographic parallel adaptation of glyphosate resistance, more recently established agricultural populations are limited to adaptation in a more mutation-limited framework.

6.
PLoS Genet ; 15(2): e1007949, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30768594

RESUMO

Allopolyploidy is generally perceived as a major source of evolutionary novelties and as an instantaneous way to create isolation barriers. However, we do not have a clear understanding of how two subgenomes evolve and interact once they have fused in an allopolyploid species nor how isolated they are from their relatives. Here, we address these questions by analyzing genomic and transcriptomic data of allotetraploid Capsella bursa-pastoris in three differentiated populations, Asia, Europe, and the Middle East. We phased the two subgenomes, one descended from the outcrossing and highly diverse Capsella grandiflora (CbpCg) and the other one from the selfing and genetically depauperate Capsella orientalis (CbpCo). For each subgenome, we assessed its relationship with the diploid relatives, temporal changes of effective population size (Ne), signatures of positive and negative selection, and gene expression patterns. In all three regions, Ne of the two subgenomes decreased gradually over time and the CbpCo subgenome accumulated more deleterious changes than CbpCg. There were signs of widespread admixture between C. bursa-pastoris and its diploid relatives. The two subgenomes were impacted differentially depending on geographic region suggesting either strong interploidy gene flow or multiple origins of C. bursa-pastoris. Selective sweeps were more common on the CbpCg subgenome in Europe and the Middle East, and on the CbpCo subgenome in Asia. In contrast, differences in expression were limited with the CbpCg subgenome slightly more expressed than CbpCo in Europe and the Middle-East. In summary, after more than 100,000 generations of co-existence, the two subgenomes of C. bursa-pastoris still retained a strong signature of parental legacy but their evolutionary trajectory strongly varied across geographic regions.


Assuntos
Capsella/genética , Evolução Molecular , Genoma de Planta , Tetraploidia , Ásia , Capsella/classificação , DNA de Plantas/genética , Diploide , Europa (Continente) , Genética Populacional , Hibridização Genética , Oriente Médio , Modelos Genéticos , Mutação , Filogenia , Filogeografia , Poliploidia , Especificidade da Espécie
7.
Mol Ecol ; 30(21): 5373-5389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33853196

RESUMO

Much of what we know about the genetic basis of herbicide resistance has come from detailed investigations of monogenic adaptation at known target-sites, despite the increasingly recognized importance of polygenic resistance. Little work has been done to characterize the broader genomic basis of herbicide resistance, including the number and distribution of genes involved, their effect sizes, allele frequencies and signatures of selection. In this work, we implemented genome-wide association (GWA) and population genomic approaches to examine the genetic architecture of glyphosate (Round-up) resistance in the problematic agricultural weed Amaranthus tuberculatus. A GWA was able to correctly identify the known target-gene but statistically controlling for two causal target-site mechanisms revealed an additional 250 genes across all 16 chromosomes associated with non-target-site resistance (NTSR). The encoded proteins had functions that have been linked to NTSR, the most significant of which is response to chemicals, but also showed pleiotropic roles in reproduction and growth. Compared to an empirical null that accounts for complex population structure, the architecture of NTSR was enriched for large effect sizes and low allele frequencies, suggesting the role of pleiotropic constraints on its evolution. The enrichment of rare alleles also suggested that the genetic architecture of NTSR may be population-specific and heterogeneous across the range. Despite their rarity, we found signals of recent positive selection on NTSR-alleles by both window- and haplotype-based statistics, and an enrichment of amino acid changing variants. In our samples, genome-wide single nucleotide polymorphisms explain a comparable amount of the total variation in glyphosate resistance to monogenic mechanisms, even in a collection of individuals where 80% of resistant individuals have large-effect TSR mutations, indicating an underappreciated polygenic contribution to the evolution of herbicide resistance in weed populations.


Assuntos
Amaranthus , Herbicidas , Amaranthus/genética , Estudo de Associação Genômica Ampla , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Humanos , Metagenômica , Glifosato
8.
Trends Genet ; 33(9): 583-593, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28732599

RESUMO

Unreduced gametes, which have the somatic (2n) chromosome number, are an important precursor to polyploid formation and apomixis. The product of irregularities in meiosis, 2n gametes are expected to be rare and deleterious in most natural populations, contrary to their wide taxonomic distribution and the prevalence of polyploidy. To better understand this discrepancy, we review contemporary evidence related to four aspects of 2n gamete dynamics in natural populations: (i) estimates of their frequency; (ii) their environmental and genetic determinants; (iii) adaptive and nonadaptive processes regulating their evolution; and (iv) factors regulating their union and production of polyploids in diploid populations. Aided by high-throughput methods of detection, these foci will advance our understanding of variation in 2n gametes within and among species, and their role in polyploid evolution.


Assuntos
Evolução Molecular , Células Germinativas , Ploidias
9.
New Phytol ; 214(2): 879-889, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28134436

RESUMO

Fertilization involving unreduced (2n) gametes is considered the dominant mechanism of polyploid formation in angiosperms; however, our knowledge of the prevalence of and evolutionary mechanisms maintaining 2n gametes in natural populations is limited. We hypothesize that 2n gametes are deleterious consequences of meiotic errors maintained by mutation-selection balance and should increase in species with relaxed opportunities for selection on sexual processes (asexuality), reduced efficacy of selection (asexuality, selfing) and increased genome instability (high chromosome number). We used flow cytometry to estimate male 2n gamete production in 60 populations from 24 species of Brassicaceae. We quantified variation in 2n gamete production within and among species, and examined associations with life history, reproductive mode, genome size and chromosomal number while accounting for phylogeny. Most individuals produced < 2% 2n male gametes, whereas a small number had > 5% (up to 85%) production. Variation in 2n gamete production was significant among species and related to reproductive system; asexual species produced significantly more 2n gametes than mixed-mating and outcrossing species. Our results, unique in their multi-species perspective, are consistent with 2n gametes being deleterious but maintained when opportunities for selection are limited. Rare individuals with elevated 2n gamete production may be key contributors to polyploid formation.


Assuntos
Brassicaceae/genética , Brassicaceae/fisiologia , Tamanho do Genoma , Genoma de Planta , Células Germinativas Vegetais/metabolismo , Análise dos Mínimos Quadrados , Modelos Genéticos , Filogenia , Reprodução , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA