Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Can J Infect Dis Med Microbiol ; 2019: 2532045, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031872

RESUMO

Mycobacterium tuberculosis Acr is an important protein expressed in latent tuberculosis which is active as an oligomer in preventing misfolding of cellular proteins. In this study, Mycobacterium alpha crystallin (acr) gene was cloned and expressed in Escherichia coli (E. coli). The recombinant Acr protein was purified by Nickel-NTA resin. The oligomeric state of Acr was confirmed by gel filtration chromatography using Sephacryl S-200 and Native-PAGE. Studies of chaperone activity were performed with insulin as a substrate at different mole ratios of Acr with 2 types of samples, His tag elutes (H) and His tag elutes with gel filtration (G). It was observed that the ratio of different sizes of oligomers (9 to 24 mers) had a significant effect on chaperone activity. Using the mole ratio of Acr for both (H) and (G) samples to insulin B chain and ratio of oligomers, we determined the number of Acr molecules binding to insulin as a model substrate. We found that if 1.5% of the insulin B chains are covered completely by the (G) samples, aggregation is completely inhibited as compared to 6% with (H) samples. Pre-heat treatment studies were carried out at 37°C, 60°C, and 70°C. Far-ultraviolet Circular Dichroism (UV-CD) analysis provided fresh insights into the role of ß-sheets and α-helices in chaperone activity, particularly in (H) samples suggesting a reversible conformational transition from helices to sheets. This enabled us to formulate a functional model for binding of Acr to insulin B chains which incorporated 4 types of secondary structure molecules. This might be a useful tool for analyzing in vitro preparations of recombinant Acr and build more consensuses on the structure-activity relationship especially in terms of oligomeric ratios.

2.
Bull World Health Organ ; 87(10): 763-71, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19876543

RESUMO

OBJECTIVE: To compare oxygen supply options for health facilities in the Gambia and develop a decision-making algorithm for choosing oxygen delivery systems in Africa and the rest of the developing world. METHODS: Oxygen cylinders and concentrators were compared in terms of functionality and cost. Interviews with key informants using locally developed and adapted WHO instruments, operational assessments, cost-modelling and cost measurements were undertaken to determine whether oxygen cylinders or concentrators were the better choice. An algorithm and a software tool to guide the choice of oxygen delivery system were constructed. FINDINGS: In the Gambia, oxygen concentrators have significant advantages compared to cylinders where power is reliable; in other settings, cylinders are preferable as long as transporting them is feasible. Cylinder costs are greatly influenced by leakage, which is common, whereas concentrator costs are affected by the cost of power far more than by capital costs. Only two of 12 facilities in the Gambia were found suitable for concentrators; at the remaining 10 facilities, cylinders were the better option. CONCLUSION: Neither concentrators nor cylinders are well suited to every situation, but a simple options assessment can determine which is better in each setting. Nationally this would result in improved supply and lower costs by comparison with conventional cylinders alone, although ensuring a reliable supply would remain a challenge. The decision algorithm and software tool designed for the Gambia could be applied in other developing countries.


Assuntos
Atenção à Saúde/economia , Consumo de Oxigênio , Oxigenoterapia/estatística & dados numéricos , África , Algoritmos , Análise Custo-Benefício , Técnicas de Apoio para a Decisão , Atenção à Saúde/organização & administração , Gâmbia , Custos de Cuidados de Saúde , Humanos , Modelos Econômicos , Oxigenoterapia/economia , Avaliação de Programas e Projetos de Saúde , Anos de Vida Ajustados por Qualidade de Vida
3.
Iran J Biotechnol ; 17(3): e2370, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32195287

RESUMO

BACKGROUND: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. OBJECTIVES: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after gel filtration chromatography. The aim was also to find the oligomeric conformation of these samples and use this information to explain differences in activit. MATERIAL AND METHODS: M. tuberculosis acr gene was cloned with an N-terminal His-tag in pET28a and expressed with IPTG induction in BL2 (DE3) competent Escherichia coli. The activity of a recombinant Acr without gel filtration was checked by preventing thermal aggregation of citrate synthase at 45°C and the chaperone activity against insulin B chain aggregation at 60°C and 37°C. On further purification using gel filtration chromatography, the protein was again tested for chaperone activity using insulin as substrate at 37°C with two types of samples without and with gel filtration designated A and B respectively. The effects of pre-heat treatment at 60 °C on chaperone activity of both A and B samples were studied by performing the chaperone assay at 37°C. RESULTS: The level of expression was 40 to 50 mg /l. The protein was expressed in a soluble form at 37°C and subsequently purified by a 3 step gradient of imidazole using Ni-NTA resin. Gel filtration chromatography showed recombinant Acr to be a mixture of 9 to 15-mers, whereas Native-PAGE analysis showed a large proportion of 5 and 7 mers in the non gel-filtered sample, while non gel -filtered samples showed more proportions of higher size oligomers. The chaperone activity of non gel-filtered (A) samples was less than gel-filtered (B) samples at 37°C with 24 µM required of A for complete inhibition as compared to 6 µM of B. The chaperone activity of non gel-filtered samples at 60°C showed complete inhibition of activity at a concentration of 44 µM. Molecular interaction studies showed influence of size of oligomers on molecular coverage of insulin B chain. Pre-heat treatment improved the activity only after the gel filtration. CONCLUSIONS: The larger proportion of monomers in the non gel-filtered sample could explain the difference in activity as compared to the gel-filtered samples in terms of molecular interaction with insulin. Increased oligomer size favorably affected secondary structure, a finding not reported so far, and warranting further investigation. A molecular level interaction of inhibition was predicted using Avogadro number of molecules and oligomer size. The difference in activity after pre-heat treatment seemed to indicate an important role for oligomerization.

4.
F1000Res ; 7: 1801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32665842

RESUMO

Background: Mycobacterial α-crystallin (Acr) is a chaperone that prevents misfolding of proteins when Mycobacterium tuberculosis is found in a latent form in the host tissue. Methods: Using insulin as a model substrate and utilizing polynomial graphs, we attempted to predict molecular-level interactions that are a function of the oligomeric state of the recombinant protein. The chaperone activity of the recombinant oligomeric Acr was measured at 60°C with Acr samples obtained before gel filtration chromatography and compared with a gel-filtered sample. Results: The polynomial graphs constructed showed improved molecular coverage of the insulin B chain by the oligomer. The 2 nd order coefficient is the one that changes with the oligomeric ratio of Acr and improves chaperone activity. Polynomial analysis suggested that it could be a useful parameter to predict chaperone activity for potential in vitro batches of M. tuberculosis Acr based on the dynamic nature of the association and disassociation of oligomers. Conclusions: The results showed that coverage of insulin B chain improved with higher ratio of 9-mer as compared to lower ratios. This was shown by both simulation plots and actual assay data. The polynomial graphs showed increase in the 2 nd order coefficient, thus suggesting the important role of oligomerisation in improved molecular coverage of insulin B chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA