Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 39, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711118

RESUMO

BACKGROUND: Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H+/OC) antiporter. Additionally, we evaluated whether triptans interacted with the efflux transporter, P-glycoprotein (P-gp). METHODS: We investigated the cellular uptake characteristics of the prototypical H+/OC antiporter substrates, pyrilamine and oxycodone, and seven different triptans in the human brain microvascular endothelial cell line, hCMEC/D3. Triptan interactions with P-gp were studied using the IPEC-J2 MDR1 cell line. Lastly, in vivo neuropharmacokinetic assessment of the unbound brain-to-plasma disposition of eletriptan was conducted in wild type and mdr1a/1b knockout mice. RESULTS: We demonstrated that most triptans were able to inhibit uptake of the H+/OC antiporter substrate, pyrilamine, with eletriptan emerging as the strongest inhibitor. Eletriptan, almotriptan, and sumatriptan exhibited a pH-dependent uptake into hCMEC/D3 cells. Eletriptan demonstrated saturable uptake kinetics with an apparent Km of 89 ± 38 µM and a Jmax of 2.2 ± 0.7 nmol·min-1·mg protein-1 (n = 3). Bidirectional transport experiments across IPEC-J2 MDR1 monolayers showed that eletriptan is transported by P-gp, thus indicating that eletriptan is both a substrate of the H+/OC antiporter and P-gp. This was further confirmed in vivo, where the unbound brain-to-unbound plasma concentration ratio (Kp,uu) was 0.04 in wild type mice while the ratio rose to 1.32 in mdr1a/1b knockout mice. CONCLUSIONS: We have demonstrated that the triptan family of compounds possesses affinity for the H+/OC antiporter proposing that the putative H+/OC antiporter plays a role in the BBB transport of triptans, particularly eletriptan. Our in vivo studies indicate that eletriptan is subjected to simultaneous brain uptake and efflux, possibly facilitated by the putative H+/OC antiporter and P-gp, respectively. Our findings offer novel insights into the potential central site of action involved in migraine treatment with triptans and highlight the significance of potential transporter related drug-drug interactions.


Assuntos
Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Camundongos Knockout , Pirrolidinas , Triptaminas , Triptaminas/farmacologia , Triptaminas/metabolismo , Triptaminas/farmacocinética , Animais , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Transporte Biológico/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Masculino , Antiporters/metabolismo , Pirilamina/metabolismo , Pirilamina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
2.
Fluids Barriers CNS ; 20(1): 96, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115090

RESUMO

BACKGROUND: Blood-brain barrier (BBB) models based on primary murine, bovine, and porcine brain capillary endothelial cell cultures have long been regarded as robust models with appropriate properties to examine the functional transport of small molecules. However, species differences sometimes complicate translating results from these models to human settings. During the last decade, brain capillary endothelial-like cells (BCECs) have been generated from stem cell sources to model the human BBB in vitro. The aim of the present study was to establish and characterize a human BBB model using human induced pluripotent stem cell (hiPSC)-derived BCECs from the hIPSC line SBAD0201. METHODS: The model was evaluated using transcriptomics, proteomics, immunocytochemistry, transendothelial electrical resistance (TEER) measurements, and, finally, transport assays to assess the functionality of selected transporters and receptor (GLUT-1, LAT-1, P-gp and LRP-1). RESULTS: The resulting BBB model displayed an average TEER of 5474 ± 167 Ω·cm2 and cell monolayer formation with claudin-5, ZO-1, and occludin expression in the tight junction zones. The cell monolayers expressed the typical BBB markers VE-cadherin, VWF, and PECAM-1. Transcriptomics and quantitative targeted absolute proteomics analyses revealed that solute carrier (SLC) transporters were found in high abundance, while the expression of efflux transporters was relatively low. Transport assays using GLUT-1, LAT-1, and LRP-1 substrates and inhibitors confirmed the functional activities of these transporters and receptors in the model. A transport assay suggested that P-gp was not functionally expressed in the model, albeit antibody staining revealed that P-gp was localized at the luminal membrane. CONCLUSIONS: In conclusion, the novel SBAD0201-derived BBB model formed tight monolayers and was proven useful for studies investigating GLUT-1, LAT-1, and LRP-1 mediated transport across the BBB. However, the model did not express functional P-gp and thus is not suitable for the performance of drug efflux P-gp reletated studies.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Bovinos , Camundongos , Suínos , Barreira Hematoencefálica/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Linhagem Celular , Transporte Biológico , Encéfalo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA