Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Circulation ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315434

RESUMO

BACKGROUND: Long QT syndrome is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2. Variant classification is difficult, often because of lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. METHODS: We quantified cell-surface trafficking of 18 796 variants in KCNH2 using a multiplexed assay of variant effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping. We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian long QT syndrome penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. RESULTS: Variant MAVE trafficking scores and automated patch clamping peak tail currents were highly correlated (Spearman rank-order ρ=0.69; n=433). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian long QT syndrome penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became nonsignificant when peak tail current and penetrance estimates were also available. The area under the receiver operator characteristic curve for 20-year event outcomes based on patient-specific sex and QTc (area under the curve, 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (area under the curve, 0.86 [0.83-0.89]) or attainable automated patch clamping peak tail current data (area under the curve, 0.84 [0.81-0.88]). CONCLUSIONS: High-throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale, whereas long QT syndrome penetrance estimates and automated patch clamping peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants.

2.
Am J Hum Genet ; 109(7): 1208-1216, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688148

RESUMO

Many genes, including KCNH2, contain "hotspot" domains associated with a high density of variants associated with disease. This has led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking assay to characterize all single-nucleotide variants in exon 2 of KCNH2, a known hotspot for variants that cause long QT syndrome type 2 and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2 allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate (AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced interpretation of variants in this "hotspot" domain is necessary. Our massively parallel trafficking assay can provide this information prospectively.


Assuntos
Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Alelos , Morte Súbita Cardíaca , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Transporte Proteico/genética
3.
Am J Hum Genet ; 109(7): 1199-1207, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688147

RESUMO

Modern sequencing technologies have revolutionized our detection of gene variants. However, in most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUSs). The aim of this study was to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in KCNH2. The assay was designed according to recommendations proposed by the Clinical Genome Sequence Variant Interpretation Working Group. Thirty-one variants (17 pathogenic/likely pathogenic, 14 benign/likely benign) were classified internally as variant controls. They were heterozygously expressed in Flp-In HEK293 cells for assessing the effects of variants on current density and channel gating in order to determine the sensitivity and specificity of the assay. All 17 pathogenic variant controls had reduced current density, and 13 of 14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying evidence of moderate or supporting strength for VUS reclassification. Inclusion of functional assay evidence enabled us to reclassify 6 out of 44 KCNH2 VUSs as likely pathogenic. The high-throughput patch-clamp assay can provide moderate-strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value of developing automated patch-clamp assays for functional characterization of ion channel gene variants.


Assuntos
Síndrome do QT Longo , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto/genética
4.
Circulation ; 145(12): 877-891, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-34930020

RESUMO

BACKGROUND: Sequencing Mendelian arrhythmia genes in individuals without an indication for arrhythmia genetic testing can identify carriers of pathogenic or likely pathogenic (P/LP) variants. However, the extent to which these variants are associated with clinically meaningful phenotypes before or after return of variant results is unclear. In addition, the majority of discovered variants are currently classified as variants of uncertain significance, limiting clinical actionability. METHODS: The eMERGE-III study (Electronic Medical Records and Genomics Phase III) is a multicenter prospective cohort that included 21 846 participants without previous indication for cardiac genetic testing. Participants were sequenced for 109 Mendelian disease genes, including 10 linked to arrhythmia syndromes. Variant carriers were assessed with electronic health record-derived phenotypes and follow-up clinical examination. Selected variants of uncertain significance (n=50) were characterized in vitro with automated electrophysiology experiments in HEK293 cells. RESULTS: As previously reported, 3.0% of participants had P/LP variants in the 109 genes. Herein, we report 120 participants (0.6%) with P/LP arrhythmia variants. Compared with noncarriers, arrhythmia P/LP carriers had a significantly higher burden of arrhythmia phenotypes in their electronic health records. Fifty-four participants had variant results returned. Nineteen of these 54 participants had inherited arrhythmia syndrome diagnoses (primarily long-QT syndrome), and 12 of these 19 diagnoses were made only after variant results were returned (0.05%). After in vitro functional evaluation of 50 variants of uncertain significance, we reclassified 11 variants: 3 to likely benign and 8 to P/LP. CONCLUSIONS: Genome sequencing in a large population without indication for arrhythmia genetic testing identified phenotype-positive carriers of variants in congenital arrhythmia syndrome disease genes. As the genomes of large numbers of people are sequenced, the disease risk from rare variants in arrhythmia genes can be assessed by integrating genomic screening, electronic health record phenotypes, and in vitro functional studies. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier; NCT03394859.


Assuntos
Arritmias Cardíacas , Testes Genéticos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Genômica , Células HEK293 , Humanos , Fenótipo , Estudos Prospectivos
5.
Am J Hum Genet ; 107(1): 111-123, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32533946

RESUMO

Partial or complete loss-of-function variants in SCN5A are the most common genetic cause of the arrhythmia disorder Brugada syndrome (BrS1). However, the pathogenicity of SCN5A variants is often unknown or disputed; 80% of the 1,390 SCN5A missense variants observed in at least one individual to date are variants of uncertain significance (VUSs). The designation of VUS is a barrier to the use of sequence data in clinical care. We selected 83 variants: 10 previously studied control variants, 10 suspected benign variants, and 63 suspected Brugada syndrome-associated variants, selected on the basis of their frequency in the general population and in individuals with Brugada syndrome. We used high-throughput automated patch clamping to study the function of the 83 variants, with the goal of reclassifying variants with functional data. The ten previously studied controls had functional properties concordant with published manual patch clamp data. All 10 suspected benign variants had wild-type-like function. 22 suspected BrS variants had loss of channel function (<10% normalized peak current) and 22 variants had partial loss of function (10%-50% normalized peak current). The previously unstudied variants were initially classified as likely benign (n = 2), likely pathogenic (n = 10), or VUSs (n = 61). After the patch clamp studies, 16 variants were benign/likely benign, 45 were pathogenic/likely pathogenic, and only 12 were still VUSs. Structural modeling identified likely mechanisms for loss of function including altered thermostability and disruptions to alpha helices, disulfide bonds, or the permeation pore. High-throughput patch clamping enabled reclassification of the majority of tested VUSs in SCN5A.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas/genética , Síndrome de Brugada/genética , Linhagem Celular , Feminino , Variação Genética , Genótipo , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Fenótipo
6.
Genet Med ; 25(3): 100355, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496179

RESUMO

PURPOSE: The congenital Long QT Syndrome (LQTS) and Brugada Syndrome (BrS) are Mendelian autosomal dominant diseases that frequently precipitate fatal cardiac arrhythmias. Incomplete penetrance is a barrier to clinical management of heterozygotes harboring variants in the major implicated disease genes KCNQ1, KCNH2, and SCN5A. We apply and evaluate a Bayesian penetrance estimation strategy that accounts for this phenomenon. METHODS: We generated Bayesian penetrance models for KCNQ1-LQT1 and SCN5A-LQT3 using variant-specific features and clinical data from the literature, international arrhythmia genetic centers, and population controls. We analyzed the distribution of posterior penetrance estimates across 4 genotype-phenotype relationships and compared continuous estimates with ClinVar annotations. Posterior estimates were mapped onto protein structure. RESULTS: Bayesian penetrance estimates of KCNQ1-LQT1 and SCN5A-LQT3 are empirically equivalent to 10 and 5 clinically phenotype heterozygotes, respectively. Posterior penetrance estimates were bimodal for KCNQ1-LQT1 and KCNH2-LQT2, with a higher fraction of missense variants with high penetrance among KCNQ1 variants. There was a wide distribution of variant penetrance estimates among identical ClinVar categories. Structural mapping revealed heterogeneity among "hot spot" regions and featured high penetrance estimates for KCNQ1 variants in contact with calmodulin and the S6 domain. CONCLUSIONS: Bayesian penetrance estimates provide a continuous framework for variant interpretation.


Assuntos
Canalopatias , Canal de Potássio KCNQ1 , Humanos , Canal de Potássio KCNQ1/genética , Mutação , Penetrância , Teorema de Bayes , Canalopatias/genética , Arritmias Cardíacas/genética
7.
PLoS Genet ; 16(6): e1008862, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32569262

RESUMO

A major challenge emerging in genomic medicine is how to assess best disease risk from rare or novel variants found in disease-related genes. The expanding volume of data generated by very large phenotyping efforts coupled to DNA sequence data presents an opportunity to reinterpret genetic liability of disease risk. Here we propose a framework to estimate the probability of disease given the presence of a genetic variant conditioned on features of that variant. We refer to this as the penetrance, the fraction of all variant heterozygotes that will present with disease. We demonstrate this methodology using a well-established disease-gene pair, the cardiac sodium channel gene SCN5A and the heart arrhythmia Brugada syndrome. From a review of 756 publications, we developed a pattern mixture algorithm, based on a Bayesian Beta-Binomial model, to generate SCN5A penetrance probabilities for the Brugada syndrome conditioned on variant-specific attributes. These probabilities are determined from variant-specific features (e.g. function, structural context, and sequence conservation) and from observations of affected and unaffected heterozygotes. Variant functional perturbation and structural context prove most predictive of Brugada syndrome penetrance.


Assuntos
Síndrome de Brugada/genética , Modelos Genéticos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Penetrância , Polimorfismo de Nucleotídeo Único , Algoritmos , Teorema de Bayes , Distribuição Binomial , Síndrome de Brugada/terapia , Bases de Dados Genéticas/estatística & dados numéricos , Conjuntos de Dados como Assunto , Humanos , Medicina de Precisão/métodos
8.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216338

RESUMO

The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking calculations and high-throughput electrophysiology experiments in the present study. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the "mouth" of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5.


Assuntos
Boca/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sódio/metabolismo , Veratridina/farmacologia , Sítios de Ligação/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Neurotoxinas/farmacologia
9.
Biochemistry ; 55(36): 5002-9, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27564391

RESUMO

There is a compelling and growing need to accurately predict the impact of amino acid mutations on protein stability for problems in personalized medicine and other applications. Here the ability of 10 computational tools to accurately predict mutation-induced perturbation of folding stability (ΔΔG) for membrane proteins of known structure was assessed. All methods for predicting ΔΔG values performed significantly worse when applied to membrane proteins than when applied to soluble proteins, yielding estimated concordance, Pearson, and Spearman correlation coefficients of <0.4 for membrane proteins. Rosetta and PROVEAN showed a modest ability to classify mutations as destabilizing (ΔΔG < -0.5 kcal/mol), with a 7 in 10 chance of correctly discriminating a randomly chosen destabilizing variant from a randomly chosen stabilizing variant. However, even this performance is significantly worse than for soluble proteins. This study highlights the need for further development of reliable and reproducible methods for predicting thermodynamic folding stability in membrane proteins.


Assuntos
Proteínas de Membrana/química , Estabilidade Proteica , Mutação Puntual , Termodinâmica
10.
Biochemistry ; 54(16): 2551-9, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25856502

RESUMO

Whole human genome sequencing of individuals is becoming rapid and inexpensive, enabling new strategies for using personal genome information to help diagnose, treat, and even prevent human disorders for which genetic variations are causative or are known to be risk factors. Many of the exploding number of newly discovered genetic variations alter the structure, function, dynamics, stability, and/or interactions of specific proteins and RNA molecules. Accordingly, there are a host of opportunities for biochemists and biophysicists to participate in (1) developing tools to allow accurate and sometimes medically actionable assessment of the potential pathogenicity of individual variations and (2) establishing the mechanistic linkage between pathogenic variations and their physiological consequences, providing a rational basis for treatment or preventive care. In this review, we provide an overview of these opportunities and their associated challenges in light of the current status of genomic science and personalized medicine, the latter often termed precision medicine.


Assuntos
Ligação Genética , Predisposição Genética para Doença , Variação Genética , Genoma Humano , Medicina de Precisão/métodos , Bioquímica , Biofísica , Humanos , Conformação de Ácido Nucleico , Medicina de Precisão/tendências , Conformação Proteica , RNA
11.
Biochemistry ; 54(41): 6402-12, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26418890

RESUMO

KCNE1 is a single transmembrane protein that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in the genes encoding either protein can result in diseases such as congenital deafness, long QT syndrome, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Despite the biological significance of KCNE1, the structure and dynamic properties of its physiologically relevant native membrane-bound state are not fully understood. In this study, the structural dynamics and topology of KCNE1 in bilayered lipid vesicles was investigated using site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy. A 53-residue nitroxide EPR scan of the KCNE1 protein sequence including all 27 residues of the transmembrane domain (45-71) and 26 residues of the N- and C-termini of KCNE1 in lipid bilayered vesicles was analyzed in terms of nitroxide side-chain motion. Continuous wave-EPR spectral line shape analysis indicated the nitroxide spin label side-chains located in the KCNE1 TMD are less mobile when compared to the extracellular region of KCNE1. The EPR data also revealed that the C-terminus of KCNE1 is more mobile when compared to the N-terminus. EPR power saturation experiments were performed on 41 sites including 18 residues previously proposed to reside in the transmembrane domain (TMD) and 23 residues of the N- and C-termini to determine the topology of KCNE1 with respect to the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayers. The results indicated that the transmembrane domain is indeed buried within the membrane, spanning the width of the lipid bilayer. Power saturation data also revealed that the extracellular region of KCNE1 is solvent-exposed with some of the portions partially or weakly interacting with the membrane surface. These results are consistent with the previously published solution NMR structure of KCNE1 in micelles.


Assuntos
Bicamadas Lipídicas/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Conformação Proteica
12.
Biophys J ; 107(7): 1697-702, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296323

RESUMO

The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR (15)N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Marcadores de Spin , Sequência de Aminoácidos , Sítios de Ligação , Cinética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Óxidos de Nitrogênio/química
13.
Biochemistry ; 53(39): 6139-41, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25243937

RESUMO

Peripheral myelin protein 22 (PMP22) is a tetraspan membrane protein strongly expressed in myelinating Schwann cells of the peripheral nervous system. Myriad missense mutations in PMP22 result in varying degrees of peripheral neuropathy. We used Rosetta 3.5 to generate a homology model of PMP22 based on the recently published crystal structure of claudin-15. The model suggests that several mutations known to result in neuropathy act by disrupting transmembrane helix packing interactions. Our model also supports suggestions from previous studies that the first transmembrane helix is not tightly associated with the rest of the helical bundle.


Assuntos
Modelos Moleculares , Mutação , Proteínas da Mielina/química , Proteínas da Mielina/genética , Doenças do Sistema Nervoso Periférico/genética , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Claudinas/química , Claudinas/genética , Claudinas/metabolismo , Cristalografia por Raios X , Dados de Sequência Molecular , Proteínas da Mielina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
14.
Biochemistry ; 53(40): 6392-401, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25234231

RESUMO

KCNE1 is a single-transmembrane protein of the KCNE family that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in KCNE1 have been linked to diseases such as long QT syndrome (LQTS), atrial fibrillation, sudden infant death syndrome, and deafness. The transmembrane domain (TMD) of KCNE1 plays a key role in mediating the physical association with KCNQ1 and in subsequent modulation of channel gating kinetics and conductance. However, the mechanisms associated with these roles for the TMD remain poorly understood, highlighting a need for experimental structural studies. A previous solution NMR study of KCNE1 in LMPG micelles revealed a curved transmembrane domain, a structural feature proposed to be critical to KCNE1 function. However, this curvature potentially reflects an artifact of working in detergent micelles. Double electron electron resonance (DEER) measurements were conducted on KCNE1 in LMPG micelles, POPC/POPG proteoliposomes, and POPC/POPG lipodisq nanoparticles to directly compare the structure of the TMD in a variety of different membrane environments. Experimentally derived DEER distances coupled with simulated annealing molecular dynamic simulations were used to probe the bilayer structure of the TMD of KCNE1. The results indicate that the structure is helical in proteoliposomes and is slightly curved, which is consistent with the previously determined solution NMR structure in micelles. The evident resilience of the curvature in the KCNE1 TMD leads us to hypothesize that the curvature is likely to be maintained upon binding of the protein to the KCNQ1 channel.


Assuntos
Bicamadas Lipídicas/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Substituição de Aminoácidos , Humanos , Lipossomos/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica
15.
Biochemistry ; 53(12): 2032-42, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24606221

RESUMO

KCNQ1 (also known as KV7.1 or KVLQT1) is a voltage-gated potassium channel modulated by members of the KCNE protein family. Among multiple functions, KCNQ1 plays a critical role in the cardiac action potential. This channel is also subject to inherited mutations that cause certain cardiac arrhythmias and deafness. In this study, we report the overexpression, purification, and preliminary structural characterization of the voltage-sensor domain (VSD) of human KCNQ1 (Q1-VSD). Q1-VSD was expressed in Escherichia coli and purified into lyso-palmitoylphosphatidylglycerol micelles, conditions under which this tetraspan membrane protein yields excellent nuclear magnetic resonance (NMR) spectra. NMR studies reveal that Q1-VSD shares a common overall topology with other channel VSDs, with an S0 helix followed by transmembrane helices S1-S4. The exact sequential locations of the helical spans do, however, show significant variations from those of the homologous segments of previously characterized VSDs. The S4 segment of Q1-VSD was seen to be α-helical (with no 310 component) and underwent rapid backbone amide H-D exchange over most of its length. These results lay the foundation for more advanced structural studies and can be used to generate testable hypotheses for future structure-function experiments.


Assuntos
Medição da Troca de Deutério , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/isolamento & purificação , Sequência de Aminoácidos , Humanos , Canal de Potássio KCNQ1/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Relação Estrutura-Atividade
16.
J Am Chem Soc ; 136(28): 9938-46, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24813921

RESUMO

The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen-host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Neisseria gonorrhoeae/química , Neisseria meningitidis/química , Dimiristoilfosfatidilcolina , Espaço Extracelular/química , Reação a Corpo Estranho , Interações Hospedeiro-Patógeno , Humanos , Bicamadas Lipídicas , Conformação Molecular , Nanotecnologia
17.
Circ Res ; 111(2): 201-11, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22652908

RESUMO

RATIONALE: Dedifferentiation of vascular smooth muscle cells (VSMC) leading to a proliferative cell phenotype significantly contributes to the development of atherosclerosis. Mitogen-activated protein kinase (MAPK) phosphorylation of proteins including connexin 43 (Cx43) has been associated with VSMC proliferation in atherosclerosis. OBJECTIVE: To investigate whether MAPK phosphorylation of Cx43 is directly involved in VSMC proliferation. METHODS AND RESULTS: We show in vivo that MAPK-phosphorylated Cx43 forms complexes with the cell cycle control proteins cyclin E and cyclin-dependent kinase 2 (CDK2) in carotids of apolipoprotein-E receptor null (ApoE(-/-)) mice and in C57Bl/6 mice treated with platelet-derived growth factor-BB (PDGF). We tested the involvement of Cx43 MAPK phosphorylation in vitro using constructs for full-length Cx43 (Cx43) or the Cx43 C-terminus (Cx43(CT)) and produced null phosphorylation Ser>Ala (Cx43(MK4A)/Cx43(CTMK4A)) and phospho-mimetic Ser>Asp (Cx43(MK4D)/Cx43(CTMK4D)) mutations. Coimmunoprecipitation studies in primary VSMC isolated from Cx43 wild-type (Cx43(+/+)) and Cx43 null (Cx43(-/-)) mice and analytic size exclusion studies of purified proteins identify that interactions between cyclin E and Cx43 requires Cx43 MAPK phosphorylation. We further demonstrate that Cx43 MAPK phosphorylation is required for PDGF-mediated VSMC proliferation. Finally, using a novel knock-in mouse containing Cx43-MK4A mutation, we show in vivo that interactions between Cx43 and cyclin E are lost and VSMC proliferation does not occur after treatment of carotids with PDGF and that neointima formation is significantly reduced in carotids after injury. CONCLUSIONS: We identify MAPK-phosphorylated Cx43 as a novel interacting partner of cyclin E in VSMC and show that this interaction is critical for VSMC proliferation. This novel interaction may be important in the development of atherosclerotic lesions.


Assuntos
Proliferação de Células , Conexina 43/metabolismo , Ciclina E/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Animais , Animais Recém-Nascidos , Aterosclerose/enzimologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Conexina 43/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/fisiologia , Ligação Proteica/fisiologia
18.
HGG Adv ; 5(2): 100270, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38219013

RESUMO

Long QT syndrome (LQTS), caused by the dysfunction of cardiac ion channels, increases the risk of sudden death in otherwise healthy young people. For many variants in LQTS genes, there is insufficient evidence to make a definitive genetic diagnosis. We have established a robust functional patch-clamp assay to facilitate classification of missense variants in KCNH2, one of the key LQTS genes. A curated set of 30 benign and 30 pathogenic missense variants were used to establish the range of normal and abnormal function. The extent to which variants reduced protein function was quantified using Z scores, the number of standard deviations from the mean of the normalized current density of the set of benign variant controls. A Z score of -2 defined the threshold for abnormal loss of function, which corresponds to 55% wild-type function. More extreme Z scores were observed for variants with a greater loss-of-function effect. We propose that the Z score for each variant can be used to inform the application and weighting of abnormal and normal functional evidence criteria (PS3 and BS3) within the American College of Medical Genetics and Genomics variant classification framework. The validity of this approach was demonstrated using a series of 18 KCNH2 missense variants detected in a childhood onset LQTS cohort, where the level of function assessed using our assay correlated to the Schwartz score (a scoring system used to quantify the probability of a clinical diagnosis of LQTS) and the length of the corrected QT (QTc) interval.


Assuntos
Síndrome do QT Longo , Mutação de Sentido Incorreto , Criança , Humanos , Morte Súbita , Canal de Potássio ERG1/genética , Coração , Síndrome do QT Longo/diagnóstico
19.
medRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38370760

RESUMO

Background: Long QT syndrome (LQTS) is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2. Variant classification is difficult, often owing to lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here, we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. Methods: We quantified cell-surface trafficking of 18,796 variants in KCNH2 using a Multiplexed Assay of Variant Effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping (APC). We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1,458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian LQTS penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. Results: Variant MAVE trafficking scores and APC peak tail currents were highly correlated (Spearman Rank-order ρ = 0.69). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian LQTS penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became non-significant when peak-tail current and penetrance estimates were also available. The area under the ROC for 20-year event outcomes based on patient-specific sex and QTc (AUC 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (AUC 0.86 [0.83-0.89]) or attainable APC peak tail current data (AUC 0.84 [0.81-0.88]). Conclusion: High throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale while LQTS penetrance estimates and APC peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants.

20.
Biochemistry ; 52(19): 3229-41, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23639031

RESUMO

Misfolding of the α-helical membrane protein peripheral myelin protein 22 (PMP22) has been implicated in the pathogenesis of the common neurodegenerative disease known as Charcot-Marie-Tooth disease (CMTD) and also several other related peripheral neuropathies. Emerging evidence suggests that the propensity of PMP22 to misfold in the cell may be due to an intrinsic lack of conformational stability. Therefore, quantitative studies of the conformational equilibrium of PMP22 are needed to gain insight into the molecular basis of CMTD. In this work, we have investigated the folding and unfolding of wild type (WT) human PMP22 in mixed micelles. Both kinetic and thermodynamic measurements demonstrate that the denaturation of PMP22 by n-lauroyl sarcosine (LS) in dodecylphosphocholine (DPC) micelles is reversible. Assessment of the conformational equilibrium indicates that a significant fraction of unfolded PMP22 persists even in the absence of the denaturing detergent. However, we find the stability of PMP22 is increased by glycerol, which facilitates quantitation of thermodynamic parameters. To our knowledge, this work represents the first report of reversible unfolding of a eukaryotic multispan membrane protein. The results indicate that WT PMP22 possesses minimal conformational stability in micelles, which parallels its poor folding efficiency in the endoplasmic reticulum. Folding equilibrium measurements for PMP22 in micelles may provide an approach to assess the effects of cellular metabolites or potential therapeutic agents on its stability. Furthermore, these results pave the way for future investigation of the effects of pathogenic mutations on the conformational equilibrium of PMP22.


Assuntos
Proteínas da Mielina/química , Dicroísmo Circular , Reagentes de Ligações Cruzadas , Glicerol , Humanos , Cinética , Micelas , Modelos Moleculares , Proteínas da Mielina/metabolismo , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Quaternária de Proteína , Termodinâmica , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA