Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Eng Online ; 23(1): 85, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180061

RESUMO

BACKGROUND: Despite advances in total knee arthroplasty, many patients are still unsatisfied with the functional outcome. Multibody simulations enable a more efficient exploration of independent variables compared to experimental studies. However, to what extent numerical models can fully reproduce knee joint kinematics is still unclear. Hence, models must be validated with different test scenarios before being applied to biomechanical questions. METHODS: In our feasibility study, we analyzed a human knee specimen on a six degree of freedom joint simulator, applying a passive flexion and different laxity tests with sequential states of ligament resection while recording the joint kinematics. Simultaneously, we generated a subject-specific multibody model of the native tibiofemoral joint considering ligaments and contact between articulating cartilage surfaces. RESULTS: Our experimental data on the sequential states of ligament resection aligned well with the literature. The model-based knee joint kinematics during passive flexion showed good agreement with the experiment, with root-mean-square errors of less than 1.61 mm for translations and 2.1° for knee joint rotations. During laxity tests, the experiment measured up to 8 mm of anteroposterior laxity, while the numerical model allowed less than 3 mm. CONCLUSION: Although the multibody model showed good agreement to the experimental kinematics during passive flexion, the validation showed that ligament parameters used in this feasibility study are too stiff to replicate experimental laxity tests correctly. Hence, more precise subject-specific ligament parameters have to be identified in the future through model optimization.


Assuntos
Estudos de Viabilidade , Articulação do Joelho , Humanos , Fenômenos Biomecânicos , Articulação do Joelho/fisiologia , Modelos Biológicos , Fenômenos Mecânicos , Amplitude de Movimento Articular , Simulação por Computador , Masculino , Ligamentos/fisiologia
2.
Life (Basel) ; 14(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063630

RESUMO

Anterior-posterior (AP) stability is an important measure of knee performance after total knee arthroplasty (TKA). To improve the stabilizing effect of implants designed to compensate for the loss of the cruciate ligaments, it is important to understand the tibiofemoral contact situation within the native ligamentous situation of the knee and how it changes after cruciate ligament resection. This in vitro study introduces a new approach to accurately measure the tibiofemoral kinematics in a six-degrees-of-freedom joint motion simulator by tracking landmark-based coordinate systems and their corresponding bone geometries. The tibiofemoral contact situation was investigated by projecting the medial and lateral flexion facet centers onto the tibial plateau under AP shear forces across various flexion angles in thirteen knees. Tests were conducted pre- and post-cruciate ligament resection. Post-cruciate ligament resection, the femoral condyles shifted closer to or even exceeded the posterior border of the tibial plateau, but only slightly closer to the anterior border. This study presents a new methodology for measuring the tibiofemoral kinematics that can be applied to multiple loading profiles. It provides a basis for further investigations, including passive or active muscle forces, to enhance the design of total knee protheses and improve surgical outcomes.

3.
Knee ; 40: 152-165, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436384

RESUMO

BACKGROUND: Positioning of the implant components and tibial insert thickness constitute critical aspects of total knee replacement (TKR) that influence the postoperative knee joint dynamics. This study aimed to investigate the impact of implant component positioning (anterior-posterior and medio-lateral shift) and varying tibial insert thickness on the tibio-femoral (TF) and patello-femoral (PF) joint kinematics and contact forces after cruciate-retaining (CR)-TKR. METHOD: A validated musculoskeletal multibody simulation (MMBS) model with a fixed-bearing CR-TKR during a squat motion up to 90° knee flexion was deployed to calculate PF and TF joint dynamics for varied implant component positions and tibial insert thicknesses. Evaluation was performed consecutively by comparing the respective knee joint parameters (e.g. contact force, quadriceps muscle force, joint kinematics) to a reference implant position. RESULTS: The PF contact forces were mostly affected by the anterior-posterior as well as medio-lateral positioning of the femoral component (by 3 mm anterior up to 31 % and by 6 mm lateral up to 14 %). TF contact forces were considerably altered by tibial insert thickness (24 % in case of + 4 mm increase) and by the anterior-posterior position of the femoral component (by 3 mm posterior up to 16 %). Concerning PF kinematics, a medialised femoral component by 6 mm increased the lateral patellar tilt by more than 5°. CONCLUSIONS: Our results indicate that regarding PF kinematics and contact forces the positioning of the femoral component was more critical than the tibial component. The positioning of the femoral component in anterior-posterior direction on and PF contact force was evident. Orthopaedic surgeons should strictly monitor the anterior-posterior as well as the medio-lateral position of the femoral component and the insert thickness.


Assuntos
Artroplastia do Joelho , Prótese Articular , Prótese do Joelho , Humanos , Artroplastia do Joelho/métodos , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiologia , Fêmur/cirurgia , Tíbia/cirurgia , Fenômenos Biomecânicos , Computadores , Amplitude de Movimento Articular/fisiologia
4.
Materials (Basel) ; 13(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455672

RESUMO

Patellofemoral (PF) disorders are considered a major clinical complication after total knee replacement (TKR). Malpositioning and design of the patellar component impacts knee joint dynamics, implant fixation and wear propagation. However, only a limited number of studies have addressed the biomechanical impact of the patellar component on PF dynamics and their results have been discussed controversially. To address these issues, we implemented a musculoskeletal multibody simulation (MMBS) study for the systematical analysis of the patellar component's thickness and positioning on PF contact forces and kinematics during dynamic squat motion with virtually implanted unconstrained cruciate-retaining (CR)-TKR. The patellar button thickness clearly increased the contact forces in the PF joint (up to 27%). Similarly, the PF contact forces were affected by superior-inferior positioning (up to 16%) and mediolateral positioning (up to 8%) of the patellar button. PF kinematics was mostly affected by the mediolateral positioning and the thickness of the patellar component. A medialization of 3 mm caused a lateral patellar shift by up to 2.7 mm and lateral patellar tilt by up to 1.6°. However, deviations in the rotational positioning of the patellar button had minor effects on PF dynamics. Aiming at an optimal intraoperative patellar component alignment, the orthopedic surgeon should pay close attention to the patellar component thickness in combination with its mediolateral and superior-inferior positioning on the retropatellar surface. Our generated MMBS model provides systematic and reproducible insight into the effects of patellar component positioning and design on PF dynamics and has the potential to serve as a preoperative analysis tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA