Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
mSphere ; 9(3): e0078523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38376205

RESUMO

Candida albicans is one of the most common causes of superficial and invasive fungal diseases in humans. Its ability to cause disease is closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The extent to which C. albicans strains isolated from patients undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles for four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation but are predominately yeast phase under in vitro hypha induction; the two low-virulence strains (94015 and 78042) do not undergo filamentation well under either condition. In vitro, deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250, but only pseudohyphae are formed in the clinical isolates. Deletion of NRG1 modestly increased the virulence of 78042, which was accompanied by increased expression of hypha-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation in vivo, expression of candidalysin (ECE1), and virulence without dramatically altering establishment of infection. Thus, the function of the conserved repressor NRG1 in C. albicans shows strain-based heterogeneity during infection.IMPORTANCEClinical isolates of the human fungal pathogen Candida albicans show significant variation in their ability to undergo in vitro filamentation and in the function of well-characterized transcriptional regulators of filamentation. Here, we show that Nrg1, a key repressor of filamentation and filament specific gene expression in standard reference strains, has strain-dependent functions, particularly during infection. Most strikingly, loss of NRG1 function can reduce filamentation, hypha-specific gene expression such as the toxin candidalysin, and virulence in some strains. Our data emphasize that the functions of seemingly fundamental and well-conserved transcriptional regulators such as Nrg1 are contextual with respect to both environment and genetic backgrounds.


Assuntos
Candida albicans , Candidíase , Humanos , Candidíase/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Neuregulina-1/genética , Neuregulina-1/metabolismo
2.
mSphere ; 9(4): e0011024, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501830

RESUMO

Candida albicans is a common human fungal pathogen that is also a commensal of the oral cavity and gastrointestinal tract. C. albicans pathogenesis is linked to its transition from budding yeast to filamentous morphologies including hyphae and pseudohyphae. The centrality of this virulence trait to C. albicans pathobiology has resulted in extensive characterization of a wide range of factors associated with filamentation with a strong focus on transcriptional regulation. The vast majority of these experiments have used in vitro conditions to induce the yeast-to-filament transition. Taking advantage of in vivo approaches to quantitatively characterize both morphology and gene expression during filamentation during mammalian infection, we have investigated the dynamics of these two aspects of filamentation in vivo and compared them to in vitro filament induction with "host-like" tissue culture media supplemented with serum at mammalian body temperature. Although filamentation shares many common features in the two conditions, we have found two significant differences. First, alternative carbon metabolism genes are expressed early during in vitro filamentation and late in vivo, suggesting significant differences in glucose availability. Second, C. albicans begins a hyphae-to-yeast transition after 4-h incubation while we find little evidence of hyphae-to-yeast transition in vivo up to 24 h post-infection. We show that the low rate of in vivo hyphae-to-yeast transition is likely due to the very low expression of PES1, a key driver of lateral yeast in vitro and that heterologous expression of PES1 is sufficient to trigger lateral yeast formation in vivo.IMPORTANCECandida albicans filamentation is correlated with virulence and is an intensively studied aspect of C. albicans biology. The vast majority of studies on C. albicans filamentation are based on in vitro induction of hyphae and pseudohyphae. Here we used an in vivo filamentation assay and in vivo expression profiling to compare the tempo of morphogenesis and gene expression between in vitro and in vivo filamentation. Although the hyphal gene expression profile is induced rapidly in both conditions, it remains stably expressed over a 12-h time course in vivo while it peaks after 4 h in vitro and is reduced. This reduced hyphal gene expression in vitro correlates with reduced hyphae and increased hyphae-to-yeast transition. By contrast, there is little evidence of hyphae-to-yeast transition in vivo.

3.
ACS Med Chem Lett ; 15(6): 822-827, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894917

RESUMO

Cryptococcal neoformans and Candida albicans are among the most prevalent causes of life-threatening fungal infections globally. The high mortality associated with these infections despite current antifungal therapy highlights the need for new drugs. In our previous work, we demonstrated that an analogue of the clinically used antimalarial mefloquine, (8-chloro-2-(4-chlorophenyl)quinolin-4-yl)(piperidin-2-yl)methanol (4377), has both antifungal activity and the ability to penetrate the central nervous system. Herein we describe the synthesis and antifungal assay of all four stereoisomers of 4377. All four stereoisomers retain potent antifungal activity with the erythro enantiomers having MIC values of 1 and 4 µg/mL against C. neoformans and C. albicans, respectively, and threo enantiomers, MIC values of 2 and 8 µg/mL, respectively. These results indicate that the stereochemistry of the piperidine methanol group is not critical for the antifungal properties of 4377 and gives guidance to future medicinal chemistry optimization efforts.

4.
mBio ; 15(8): e0124924, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949302

RESUMO

Protein kinases are critical regulatory proteins in both prokaryotes and eukaryotes. Accordingly, protein kinases represent a common drug target for a wide range of human diseases. Therefore, understanding protein kinase function in human pathogens such as the fungus Candida albicans is likely to extend our knowledge of its pathobiology and identify new potential therapies. To facilitate the study of C. albicans protein kinases, we constructed a library of 99 non-essential protein kinase homozygous deletion mutants marked with barcodes in the widely used SN genetic background. Here, we describe the construction of this library and the characterization of the competitive fitness of the protein kinase mutants under 11 different growth and stress conditions. We also screened the library for protein kinase mutants with altered filamentation and biofilm formation, two critical virulence traits of C. albicans. An extensive network of protein kinases governs these virulence traits in a manner highly dependent on the specific environmental conditions. Studies on specific protein kinases revealed that (i) the cell wall integrity MAPK pathway plays a condition-dependent role in filament initiation and elongation; (ii) the hyper-osmolar glycerol MAPK pathway is required for both filamentation and biofilm formation, particularly in the setting of in vivo catheter infection; and (iii) Sok1 is dispensable for filamentation in hypoxic environments at the basal level of a biofilm but is required for filamentation in normoxia. In addition to providing a new genetic resource for the community, these observations emphasize the environmentally contingent function of C. albicans protein kinases.IMPORTANCECandida albicans is one of the most common causes of fungal disease in humans for which new therapies are needed. Protein kinases are key regulatory proteins and are increasingly targeted by drugs for the treatment of a wide range of diseases. Understanding protein kinase function in C. albicans pathogenesis may facilitate the development of new antifungal drugs. Here, we describe a new library of 99 protein kinase deletion mutants to facilitate the study of protein kinases. Furthermore, we show that the function of protein kinases in two virulence-related processes, filamentation and biofilm formation, is dependent on the specific environmental conditions.


Assuntos
Biofilmes , Candida albicans , Proteínas Quinases , Candida albicans/genética , Candida albicans/enzimologia , Candida albicans/patogenicidade , Candida albicans/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Virulência , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candidíase/microbiologia , Regulação Fúngica da Expressão Gênica , Camundongos , Hifas/crescimento & desenvolvimento , Hifas/genética
5.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168187

RESUMO

Candida albicans is one of the most common causes of superficial and invasive fungal disease in humans. Its ability to cause disease has been closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The ability of C. albicans strains isolated from patients to undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles of four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation while remaining predominately yeast phase exposed to RPMI+10% bovine calf serum at 37°C; the two low virulence strains (94015 and 78042) do not filament well under either condition. Deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250 but only pseudohyphae are formed in the clinical isolates in vivo. Deletion of NRG1 modestly increased the virulence of 78042 which was accompanied by increased expression of hyphae-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation, expression of candidalysin (ECE1) and virulence in vivo without dramatically altering establishment of infection. Thus, the function of NRG1 varies significantly within this set of C. albicans isolates and can actually suppress filamentation in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA