Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nat Methods ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918604

RESUMO

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

2.
Nat Methods ; 18(2): 156-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33542514

RESUMO

This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Moleculares , Cristalografia por Raios X , Conformação Proteica , Proteínas/química
3.
Proteins ; 91(12): 1558-1570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37254889

RESUMO

Processing of CASP15 targets into evaluation units (EUs) and assigning them to evolutionary-based prediction classes is presented in this study. The targets were first split into structural domains based on compactness and similarity to other proteins. Models were then evaluated against these domains and their combinations. The domains were joined into larger EUs if predictors' performance on the combined units was similar to that on individual domains. Alternatively, if most predictors performed better on the individual domains, then they were retained as EUs. As a result, 112 evaluation units were created from 77 tertiary structure prediction targets. The EUs were assigned to four prediction classes roughly corresponding to target difficulty categories in previous CASPs: TBM (template-based modeling, easy or hard), FM (free modeling), and the TBM/FM overlap category. More than a third of CASP15 EUs were attributed to the historically most challenging FM class, where homology or structural analogy to proteins of known fold cannot be detected.


Assuntos
Biologia Computacional , Dobramento de Proteína , Modelos Moleculares , Bases de Dados de Proteínas , Proteínas/química
4.
Proteins ; 91(12): 1636-1657, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861057

RESUMO

In CASP15, 87 predictors submitted around 11 000 models on 41 assembly targets. The community demonstrated exceptional performance in overall fold and interface contact predictions, achieving an impressive success rate of 90% (compared to 31% in CASP14). This remarkable accomplishment is largely due to the incorporation of DeepMind's AF2-Multimer approach into custom-built prediction pipelines. To evaluate the added value of participating methods, we compared the community models to the baseline AF2-Multimer predictor. In over 1/3 of cases, the community models were superior to the baseline predictor. The main reasons for this improved performance were the use of custom-built multiple sequence alignments, optimized AF2-Multimer sampling, and the manual assembly of AF2-Multimer-built subcomplexes. The best three groups, in order, are Zheng, Venclovas, and Wallner. Zheng and Venclovas reached a 73.2% success rate over all (41) cases, while Wallner attained 69.4% success rate over 36 cases. Nonetheless, challenges remain in predicting structures with weak evolutionary signals, such as nanobody-antigen, antibody-antigen, and viral complexes. Expectedly, modeling large complexes also remains challenging due to their high memory compute demands. In addition to the assembly category, we assessed the accuracy of modeling interdomain interfaces in the tertiary structure prediction targets. Models on seven targets featuring 17 unique interfaces were analyzed. Best predictors achieved a 76.5% success rate, with the UM-TBM group being the leader. In the interdomain category, we observed that the predictors faced challenges, as in the case of the assembly category, when the evolutionary signal for a given domain pair was weak or the structure was large. Overall, CASP15 witnessed unprecedented improvement in interface modeling, reflecting the AI revolution seen in CASP14.


Assuntos
Algoritmos , Furilfuramida , Modelos Moleculares , Proteínas/química , Inteligência Artificial , Conformação Proteica , Biologia Computacional/métodos
5.
Proteins ; 91(12): 1903-1911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872703

RESUMO

For the first time, the 2022 CASP (Critical Assessment of Structure Prediction) community experiment included a section on computing multiple conformations for protein and RNA structures. There was full or partial success in reproducing the ensembles for four of the nine targets, an encouraging result. For protein structures, enhanced sampling with variations of the AlphaFold2 deep learning method was by far the most effective approach. One substantial conformational change caused by a single mutation across a complex interface was accurately reproduced. In two other assembly modeling cases, methods succeeded in sampling conformations near to the experimental ones even though environmental factors were not included in the calculations. An experimentally derived flexibility ensemble allowed a single accurate RNA structure model to be identified. Difficulties included how to handle sparse or low-resolution experimental data and the current lack of effective methods for modeling RNA/protein complexes. However, these and other obstacles appear addressable.


Assuntos
Proteínas , RNA , Conformação Proteica , Proteínas/química , Mutação
6.
Proteins ; 91(12): 1539-1549, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37920879

RESUMO

Computing protein structure from amino acid sequence information has been a long-standing grand challenge. Critical assessment of structure prediction (CASP) conducts community experiments aimed at advancing solutions to this and related problems. Experiments are conducted every 2 years. The 2020 experiment (CASP14) saw major progress, with the second generation of deep learning methods delivering accuracy comparable with experiment for many single proteins. There is an expectation that these methods will have much wider application in computational structural biology. Here we summarize results from the most recent experiment, CASP15, in 2022, with an emphasis on new deep learning-driven progress. Other papers in this special issue of proteins provide more detailed analysis. For single protein structures, the AlphaFold2 deep learning method is still superior to other approaches, but there are two points of note. First, although AlphaFold2 was the core of all the most successful methods, there was a wide variety of implementation and combination with other methods. Second, using the standard AlphaFold2 protocol and default parameters only produces the highest quality result for about two thirds of the targets, and more extensive sampling is required for the others. The major advance in this CASP is the enormous increase in the accuracy of computed protein complexes, achieved by the use of deep learning methods, although overall these do not fully match the performance for single proteins. Here too, AlphaFold2 based method perform best, and again more extensive sampling than the defaults is often required. Also of note are the encouraging early results on the use of deep learning to compute ensembles of macromolecular structures. Critically for the usability of computed structures, for both single proteins and protein complexes, deep learning derived estimates of both local and global accuracy are of high quality, however the estimates in interface regions are slightly less reliable. CASP15 also included computation of RNA structures for the first time. Here, the classical approaches produced better agreement with experiment than the new deep learning ones, and accuracy is limited. Also, for the first time, CASP included the computation of protein-ligand complexes, an area of special interest for drug design. Here too, classical methods were still superior to deep learning ones. Many new approaches were discussed at the CASP conference, and it is clear methods will continue to advance.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Proteínas/química , Sequência de Aminoácidos , Biologia Computacional/métodos
7.
Proteins ; 91(12): 1935-1951, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994556

RESUMO

CASP assessments primarily rely on comparing predicted coordinates with experimental reference structures. However, experimental structures by their nature are only models themselves-their construction involves a certain degree of subjectivity in interpreting density maps and translating them to atomic coordinates. Here, we directly utilized density maps to evaluate the predictions by employing a method for ranking the quality of protein chain predictions based on their fit into the experimental density. The fit-based ranking was found to correlate well with the CASP assessment scores. Overall, the evaluation against the density map indicated that the models are of high accuracy, and occasionally even better than the reference structure in some regions of the model. Local assessment of predicted side chains in a 1.52 Å resolution map showed that side-chains are sometimes poorly positioned. Additionally, the top 118 predictions associated with 9 protein target reference structures were selected for automated refinement, in addition to the top 40 predictions for 11 RNA targets. For both proteins and RNA, the refinement of CASP15 predictions resulted in structures that are close to the reference target structure. This refinement was successful despite large conformational changes often being required, showing that predictions from CASP-assessed methods could serve as a good starting point for building atomic models in cryo-EM maps for both proteins and RNA. Loop modeling continued to pose a challenge for predictors, and together with the lack of consensus amongst models in these regions suggests that modeling, in combination with model-fit to the density, holds the potential for identifying more flexible regions within the structure.


Assuntos
Proteínas , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Proteínas/química , Conformação Proteica
8.
Proteins ; 91(12): 1616-1635, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746927

RESUMO

The results of tertiary structure assessment at CASP15 are reported. For the first time, recognizing the outstanding performance of AlphaFold 2 (AF2) at CASP14, all single-chain predictions were assessed together, irrespective of whether a template was available. At CASP15, there was no single stand-out group, with most of the best-scoring groups-led by PEZYFoldings, UM-TBM, and Yang Server-employing AF2 in one way or another. Many top groups paid special attention to generating deep Multiple Sequence Alignments (MSAs) and testing variant MSAs, thereby allowing them to successfully address some of the hardest targets. Such difficult targets, as well as lacking templates, were typically proteins with few homologues. Local divergence between prediction and target correlated with localization at crystal lattice or chain interfaces, and with regions exhibiting high B-factor factors in crystal structure targets, and should not necessarily be considered as representing error in the prediction. However, analysis of exposed and buried side chain accuracy showed room for improvement even in the latter. Nevertheless, a majority of groups produced high-quality predictions for most targets, which are valuable for experimental structure determination, functional analysis, and many other tasks across biology. These include those applying methods similar to those used to generate major resources such as the AlphaFold Protein Structure Database and the ESM Metagenomic atlas: the confidence estimates of the former were also notably accurate.


Assuntos
Biologia Computacional , Furilfuramida , Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Alinhamento de Sequência
9.
Proteins ; 91(12): 1550-1557, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37306011

RESUMO

Prediction categories in the Critical Assessment of Structure Prediction (CASP) experiments change with the need to address specific problems in structure modeling. In CASP15, four new prediction categories were introduced: RNA structure, ligand-protein complexes, accuracy of oligomeric structures and their interfaces, and ensembles of alternative conformations. This paper lists technical specifications for these categories and describes their integration in the CASP data management system.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Proteínas/química , Modelos Moleculares , Ligantes
10.
Proteins ; 91(12): 1600-1615, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37466021

RESUMO

The first RNA category of the Critical Assessment of Techniques for Structure Prediction competition was only made possible because of the scientists who provided experimental structures to challenge the predictors. In this article, these scientists offer a unique and valuable analysis of both the successes and areas for improvement in the predicted models. All 10 RNA-only targets yielded predictions topologically similar to experimentally determined structures. For one target, experimentalists were able to phase their x-ray diffraction data by molecular replacement, showing a potential application of structure predictions for RNA structural biologists. Recommended areas for improvement include: enhancing the accuracy in local interaction predictions and increased consideration of the experimental conditions such as multimerization, structure determination method, and time along folding pathways. The prediction of RNA-protein complexes remains the most significant challenge. Finally, given the intrinsic flexibility of many RNAs, we propose the consideration of ensemble models.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Proteínas/química , Modelos Moleculares , Biologia Computacional/métodos , Difração de Raios X
11.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493353

RESUMO

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Biologia Computacional/métodos , Proteínas/química
12.
Proteins ; 89(12): 1787-1799, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34337786

RESUMO

In CASP14, 39 research groups submitted more than 2500 3D models on 22 protein complexes. In general, the community performed well in predicting the fold of the assemblies (for 80% of the targets), although it faced significant challenges in reproducing the native contacts. This is especially the case for the complexes without whole-assembly templates. The leading predictor, BAKER-experimental, used a methodology combining classical techniques (template-based modeling, protein docking) with deep learning-based contact predictions and a fold-and-dock approach. The Venclovas team achieved the runner-up position with template-based modeling and docking. By analyzing the target interfaces, we showed that the complexes with depleted charged contacts or dominating hydrophobic interactions were the most challenging ones to predict. We also demonstrated that if AlphaFold2 predictions were at hand, the interface prediction challenge could be alleviated for most of the targets. All in all, it is evident that new approaches are needed for the accurate prediction of assemblies, which undoubtedly will expand on the significant improvements in the tertiary structure prediction field.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas , Software , Biologia Computacional , Bases de Dados de Proteínas , Estrutura Quaternária de Proteína , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
13.
Proteins ; 89(12): 1949-1958, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34398978

RESUMO

Structures of seven CASP14 targets were determined using cryo-electron microscopy (cryo-EM) technique with resolution between 2.1 and 3.8 Å. We provide an evaluation of the submitted models versus the experimental data (cryo-EM density maps) and experimental reference structures built into the maps. The accuracy of models is measured in terms of coordinate-to-density and coordinate-to-coordinate fit. A-posteriori refinement of the most accurate models in their corresponding cryo-EM density resulted in structures that are close to the reference structure, including some regions with better fit to the density. Regions that were found to be less "refineable" correlate well with regions of high diversity between the CASP models and low goodness-of-fit to density in the reference structure.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Moleculares , Proteínas , Software , Biologia Computacional , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
14.
Proteins ; 89(12): 1940-1948, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34324227

RESUMO

In CASP, blind testing of model accuracy estimation methods has been conducted on models submitted by tertiary structure prediction servers. In CASP14, model accuracy estimation results were evaluated in terms of both global and local structure accuracy, as in the previous CASPs. Unlike the previous CASPs that did not show pronounced improvements in performance, the best single-model method (from the Baker group) showed an improved performance in CASP14, particularly in evaluating global structure accuracy when compared to both the best single-model methods in previous CASPs and the best multi-model methods in the current CASP. Although the CASP14 experiment on model accuracy estimation did not deal with the structures generated by AlphaFold2, new challenges that have arisen due to the success of AlphaFold2 are discussed.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas , Software , Biologia Computacional , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de Proteína/métodos
15.
Proteins ; 89(12): 1607-1617, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34533838

RESUMO

Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep-learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein-folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter-residue contacts and distances, are also described.


Assuntos
Conformação Proteica , Dobramento de Proteína , Proteínas , Software , Sequência de Aminoácidos , Biologia Computacional , Modelos Estatísticos , Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
16.
Proteins ; 89(12): 1700-1710, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455641

RESUMO

The high accuracy of some CASP14 models at the domain level prompted a more detailed evaluation of structure predictions on whole targets. For the first time in critical assessment of structure prediction (CASP), we evaluated accuracy of difficult domain assembly in models submitted for multidomain targets where the community predicted individual evaluation units (EUs) with greater accuracy than full-length targets. Ten proteins with domain interactions that did not show evidence of conformational change and were not involved in significant oligomeric contacts were chosen as targets for the domain interaction assessment. Groups were ranked using complementary interaction scores (F1, QS score, and Jaccard coefficient), and their predictions were evaluated for their ability to correctly model inter-domain interfaces and overall protein folds. Target performance was broadly grouped into two clusters. The first consisted primarily of targets containing two EUs wherein predictors more broadly predicted domain positioning and interfacial contacts correctly. The other consisted of complex two-EU and three-EU targets where few predictors performed well. The highest ranked predictor, AlphaFold2, produced high-accuracy models on eight out of 10 targets. Their interdomain scores on three of these targets were significantly higher than all other groups and were responsible for their overall outperformance in the category. We further highlight the performance of AlphaFold2 and the next best group, BAKER-experimental on several interesting targets.


Assuntos
Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas , Biologia Computacional , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína , Software
17.
Proteins ; 89(12): 1852-1869, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288138

RESUMO

We report here an assessment of the model refinement category of the 14th round of Critical Assessment of Structure Prediction (CASP14). As before, predictors submitted up to five ranked refinements, along with associated residue-level error estimates, for targets that had a wide range of starting quality. The ability of groups to accurately rank their submissions and to predict coordinate error varied widely. Overall, only four groups out-performed a "naïve predictor" corresponding to the resubmission of the starting model. Among the top groups, there are interesting differences of approach and in the spread of improvements seen: some methods are more conservative, others more adventurous. Some targets were "double-barreled" for which predictors were offered a high-quality AlphaFold 2 (AF2)-derived prediction alongside another of lower quality. The AF2-derived models were largely unimprovable, many of their apparent errors being found to reside at domain and, especially, crystal lattice contacts. Refinement is shown to have a mixed impact overall on structure-based function annotation methods to predict nucleic acid binding, spot catalytic sites, and dock protein structures.


Assuntos
Modelos Moleculares , Proteínas , Software , Biologia Computacional , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
18.
Proteins ; 89(12): 1618-1632, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34350630

RESUMO

An evolutionary-based definition and classification of target evaluation units (EUs) is presented for the 14th round of the critical assessment of structure prediction (CASP14). CASP14 targets included 84 experimental models submitted by various structural groups (designated T1024-T1101). Targets were split into EUs based on the domain organization of available templates and performance of server groups. Several targets required splitting (19 out of 25 multidomain targets) due in part to observed conformation changes. All in all, 96 CASP14 EUs were defined and assigned to tertiary structure assessment categories (Topology-based FM or High Accuracy-based TBM-easy and TBM-hard) considering their evolutionary relationship to existing ECOD fold space: 24 family level, 50 distant homologs (H-group), 12 analogs (X-group), and 10 new folds. Principal component analysis and heatmap visualization of sequence and structure similarity to known templates as well as performance of servers highlighted trends in CASP14 target difficulty. The assigned evolutionary levels (i.e., H-groups) and assessment classes (i.e., FM) displayed overlapping clusters of EUs. Many viral targets diverged considerably from their template homologs and thus were more difficult for prediction than other homology-related targets. On the other hand, some targets did not have sequence-identifiable templates, but were predicted better than expected due to relatively simple arrangements of secondary structural elements. An apparent improvement in overall server performance in CASP14 further complicated traditional classification, which ultimately assigned EUs into high-accuracy modeling (27 TBM-easy and 31 TBM-hard), topology (23 FM), or both (15 FM/TBM).


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas , Sequência de Aminoácidos , Biologia Computacional , Evolução Molecular , Proteínas/química , Proteínas/genética , Análise de Sequência de Proteína , Software
19.
Proteins ; 89(12): 1673-1686, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34240477

RESUMO

This report describes the tertiary structure prediction assessment of difficult modeling targets in the 14th round of the Critical Assessment of Structure Prediction (CASP14). We implemented an official ranking scheme that used the same scores as the previous CASP topology-based assessment, but combined these scores with one that emphasized physically realistic models. The top performing AlphaFold2 group outperformed the rest of the prediction community on all but two of the difficult targets considered in this assessment. They provided high quality models for most of the targets (86% over GDT_TS 70), including larger targets above 150 residues, and they correctly predicted the topology of almost all the rest. AlphaFold2 performance was followed by two manual Baker methods, a Feig method that refined Zhang-server models, two notable automated Zhang server methods (QUARK and Zhang-server), and a Zhang manual group. Despite the remarkable progress in protein structure prediction of difficult targets, both the prediction community and AlphaFold2, to a lesser extent, faced challenges with flexible regions and obligate oligomeric assemblies. The official ranking of top-performing methods was supported by performance generated PCA and heatmap clusters that gave insight into target difficulties and the most successful state-of-the-art structure prediction methodologies.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Software , Bases de Dados de Proteínas , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
20.
Proteins ; 89(12): 1888-1900, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34595772

RESUMO

We present the results of the assessment of the intramolecular residue-residue contact and distance predictions from groups participating in the 14th round of the CASP experiment. The performance of contact prediction methods was evaluated with the measures used in previous CASPs, while distance predictions were assessed based on a new protocol, which considers individual distance pairs as well as the whole predicted distance matrix, using a graph-based framework. The results of the evaluation indicate that predictions by the tFold framework, TripletRes and DeepPotential were the most accurate in both categories. With regards to progress in method performance, the results of the assessment in contact prediction did not reveal any discernible difference when compared to CASP13. Arguably, this could be due to CASP14 FM targets being more challenging than ever before.


Assuntos
Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica , Proteínas , Software , Biologia Computacional , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA