RESUMO
Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.
Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Masculino , Apoptose/fisiologia , Proteína X Associada a bcl-2 , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismoRESUMO
OBJECTIVE: Intellectual disability is often the outcome of neurodevelopmental disorders and is characterized by significant impairments in intellectual and adaptive functioning. X-linked intellectual disability (XLID) is a subset of these disorders caused by genetic defects on the X chromosome, affecting about 2 out of 1,000 males. In syndromic form, it leads to a broad range of cognitive, behavioral, ocular, and physical disabilities. METHODS: Employing exome or genome sequencing, here we identified 4 missense variants (c.475C > G; p.H159D, c.1373C > A; p.T458N, and c.1585G > A; p.E529K, c.953C > T; p.S318L) and a putative truncating variant (c.1413_1414del; p.Y471*) in the SRPK3 gene in 9 XLID patients from 5 unrelated families. To validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. RESULTS: The 8 patients ascertained postnatally shared common clinical features including intellectual disability, agenesis of the corpus callosum, abnormal eye movement, and ataxia. A ninth case, ascertained prenatally, had a complex structural brain phenotype. Together, these data indicate a pathological role of SRPK3 in neurodevelopmental disorders. In post-fertilization day 5 larvae (free swimming stage), KO zebrafish exhibited severe deficits in eye movement and swim bladder inflation, mimicking uncontrolled ocular movement and physical clumsiness observed in human patients. In adult KO zebrafish, cerebellar agenesis and behavioral abnormalities were observed, recapitulating human phenotypes of cerebellar atrophy and intellectual disability. INTERPRETATION: Overall, these results suggest a crucial role of SRPK3 in the pathogenesis of syndromic X-linked intellectual disability and provide new insights into brain development, cognitive and ocular dysfunction in both humans and zebrafish. ANN NEUROL 2024;96:914-931.
Assuntos
Proteínas Serina-Treonina Quinases , Peixe-Zebra , Animais , Humanos , Masculino , Proteínas Serina-Treonina Quinases/genética , Feminino , Criança , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Pré-Escolar , Adolescente , Cognição/fisiologia , Adulto , OlhoRESUMO
The activation or inactivation of B-cell lymphoma-2 (Bcl-2) antagonist/killer (Bak) is critical for controlling mitochondrial outer membrane permeabilization-dependent apoptosis. Its pro-apoptotic activity is controlled by intermolecular interactions with the Bcl-2 homology 3 (BH3) domain, which is accommodated in the hydrophobic pocket of Bak. Bcl-2-interacting protein 5 (Bnip5) is a noncanonical BH3 domain-containing protein that interacts with Bak. Bnip5 is characterized by its controversial effects on the regulation of the pro-apoptotic activity of Bak. In the present study, we determined the crystal structure of Bak bound to Bnip5 BH3. The intermolecular association appeared to be typical at first glance, but we found that it is maintained by tight hydrophobic interactions together with hydrogen/ionic bonds, which accounts for their high binding affinity with a dissociation constant of 775 nM. Structural analysis of the complex showed that Bnip5 interacts with Bak in a manner similar to that of the Bak-activating pro-apoptotic factor peroxisomal testis-enriched protein 1, particularly in the destabilization of the intramolecular electrostatic network of Bak. Our structure is considered to reflect the initial point of drastic and consecutive conformational and stoichiometric changes in Bak induced by Bnip5 BH3, which helps in explaining the effects of Bnip5 in regulating Bak-mediated apoptosis.
Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Domínios Proteicos , Proteína bcl-X/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Apoptose/fisiologiaRESUMO
Condensins are key mediators of chromosome condensation across organisms. Like other condensins, the bacterial MukBEF condensin complex consists of an SMC family protein dimer containing two ATPase head domains, MukB, and two interacting subunits, MukE and MukF. We report complete structural views of the intersubunit interactions of this condensin along with ensuing studies that reveal a role for the ATPase activity of MukB. MukE and MukF together form an elongated dimeric frame, and MukF's C-terminal winged-helix domains (C-WHDs) bind MukB heads to constitute closed ring-like structures. Surprisingly, one of the two bound C-WHDs is forced to detach upon ATP-mediated engagement of MukB heads. This detachment reaction depends on the linker segment preceding the C-WHD, and mutations on the linker restrict cell growth. Thus ATP-dependent transient disruption of the MukB-MukF interaction, which creates openings in condensin ring structures, is likely to be a critical feature of the functional mechanism of condensins.
Assuntos
Adenosina Trifosfatases/química , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Estrutura Terciária de ProteínaRESUMO
Leukodystrophy with vanishing white matter (VWM), also called Childhood Ataxia with Central Nervous System Hypomyelination, is caused by mutations in the subunits of the eukaryotic translation initiation factor, EIF2B1, EIF2B2, EIF2B3, EIF2B4 or EIF2B5. However, little is known regarding the underlying pathogenetic mechanisms, and there is no curative treatment for VWM. In this study, we established the first EIF2B3 animal model for VWM disease in vertebrates by CRISPR mutagenesis of the highly conserved zebrafish ortholog eif2b3. Using CRISPR, we generated two mutant alleles in zebrafish eif2b3, 10- and 16-bp deletions, respectively. The eif2b3 mutants showed defects in myelin development and glial cell differentiation, and increased expression of genes in the induced stress response pathway. Interestingly, we also found ectopic angiogenesis and increased VEGF expression. Ectopic angiogenesis in the eif2b3 mutants was reduced by the administration of VEGF receptor inhibitor SU5416. Using the eif2b3 mutant zebrafish model together with in silico protein modeling analysis, we demonstrated the pathogenicity of 18 reported mutations in EIF2B3, as well as of a novel variant identified in a 19-month-old female patient: c.503 T > C (p.Leu168Pro). In summary, our zebrafish mutant model of eif2b3 provides novel insights into VWM pathogenesis and offers rapid functional analysis of human EIF2B3 gene variants.
Assuntos
Fator de Iniciação 2B em Eucariotos/genética , Regulação da Expressão Gênica no Desenvolvimento , Leucoencefalopatias/genética , Bainha de Mielina/genética , Neovascularização Fisiológica , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Alelos , Animais , Diferenciação Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Fator de Iniciação 2B em Eucariotos/química , Feminino , Técnicas de Inativação de Genes , Humanos , Lactente , Leucoencefalopatias/metabolismo , Modelos Moleculares , Bainha de Mielina/metabolismo , Neovascularização Fisiológica/genética , Conformação Proteica , Deleção de Sequência , Estresse Fisiológico , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Antiapoptotic B-cell lymphoma-2 (Bcl-2) proteins suppress apoptosis by interacting with proapoptotic regulators. They commonly contain a hydrophobic groove where the Bcl-2 homology 3 (BH3) domain of Bcl-2 family members or BH3 domain-containing non-Bcl-2 family proteins can be accommodated. Peroxisomal testis-specific 1 (Pxt1) was previously identified as a male germ cell-specific protein whose overexpression causes germ cell apoptosis and infertility in male mice. Sequence and biochemical analyses also showed that human Pxt1, which is composed of 134 amino acids and is longer than mouse Pxt1 consisting of only 51 amino acids, has a BH3 domain that interacts with antiapoptotic Bcl-2 proteins, including Bcl-2 and Bcl-xL. In this study, we determined the crystal structure of Bcl-xL bound to the human Pxt1 BH3 domain. The five BH3 consensus residues are well conserved in the human Pxt1 BH3 domain and make a critical contribution to the complex formation in a canonical manner. Structural and biochemical analyses also demonstrated that Bcl-xL interacts with the BH3 domain of human Pxt1 but not with that of mouse Pxt1, and that residues 76-83 of human Pxt1, absent in mouse Pxt1, play a pivotal role in the intermolecular binding to Bcl-xL. While Bcl-xL consistently colocalized with human Pxt1 in mitochondria, it did not do so with mouse Pxt1, when expressed in HeLa cells. Collectively, these data verified that human and mouse Pxt1 differ in their binding ability to the antiapoptotic regulator Bcl-xL, which might affect their functionality in controlling apoptosis.
Assuntos
Proteínas Reguladoras de Apoptose , Testículo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Testículo/metabolismo , Proteína bcl-X/metabolismoRESUMO
Human papillomaviruses (HPVs) are causative agents of various diseases associated with cellular hyperproliferation, including cervical cancer, one of the most prevalent tumors in women. E7 is one of the two HPV-encoded oncoproteins and directs recruitment and subsequent degradation of tumor-suppressive proteins such as retinoblastoma protein (pRb) via its LxCxE motif. E7 also triggers tumorigenesis in a pRb-independent pathway through its C-terminal domain, which has yet been largely undetermined, with a lack of structural information in a complex form with a host protein. Herein, we present the crystal structure of the E7 C-terminal domain of HPV18 belonging to the high-risk HPV genotypes bound to the catalytic domain of human nonreceptor-type protein tyrosine phosphatase 14 (PTPN14). They interact directly and potently with each other, with a dissociation constant of 18.2 nM. Ensuing structural analysis revealed the molecular basis of the PTPN14-binding specificity of E7 over other protein tyrosine phosphatases and also led to the identification of PTPN21 as a direct interacting partner of E7. Disruption of HPV18 E7 binding to PTPN14 by structure-based mutagenesis impaired E7's ability to promote keratinocyte proliferation and migration. Likewise, E7 binding-defective PTPN14 was resistant for degradation via proteasome, and it was much more effective than wild-type PTPN14 in attenuating the activity of downstream effectors of Hippo signaling and negatively regulating cell proliferation, migration, and invasion when examined in HPV18-positive HeLa cells. These results therefore demonstrated the significance and therapeutic potential of the intermolecular interaction between HPV E7 and host PTPN14 in HPV-mediated cell transformation and tumorigenesis.
Assuntos
Transformação Celular Neoplásica , Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Neoplasias do Colo do Útero/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Feminino , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Ligação Proteica , Domínios Proteicos , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Homologia de Sequência de Aminoácidos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologiaRESUMO
Astrocytes perform multiple essential functions in the developing and mature brain, including regulation of synapse formation, control of neurotransmitter release and uptake, and maintenance of extracellular ion balance. As a result, astrocytes have been implicated in the progression of neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Despite these critical functions, the study of human astrocytes can be difficult because standard differentiation protocols are time-consuming and technically challenging, but a differentiation protocol recently developed in our laboratory enables the efficient derivation of astrocytes from human embryonic stem cells. We used this protocol along with microarrays, luciferase assays, electrophoretic mobility shift assays, and ChIP assays to explore the genes involved in astrocyte differentiation. We demonstrate that paired-like homeodomain transcription factor 1 (PITX1) is critical for astrocyte differentiation. PITX1 overexpression induced early differentiation of astrocytes, and its knockdown blocked astrocyte differentiation. PITX1 overexpression also increased and PITX1 knockdown decreased expression of sex-determining region Y box 9 (SOX9), known initiator of gliogenesis, during early astrocyte differentiation. Moreover, we determined that PITX1 activates the SOX9 promoter through a unique binding motif. Taken together, these findings indicate that PITX1 drives astrocyte differentiation by sustaining activation of the SOX9 promoter.
Assuntos
Astrócitos/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição SOX9/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição SOX9/genéticaRESUMO
Cytosolic protein tyrosine phosphatase epsilon (cyt-PTPε) plays a central role in controlling differentiation and function of osteoclasts, whose overactivation causes osteoporosis. Based on our previous study reporting a number of cyt-PTPε inhibitory chemical compounds, we carried out a further and extended analysis of our compounds to examine their effects on cyt-PTPε-mediated dephosphorylation and on osteoclast organization and differentiation. Among five compounds showing target selectivity to cyt-PTPε over three other phosphatases in vitro, two compounds exhibited an inhibitory effect against the dephosphorylation of cellular Src protein, the cyt-PTPε substrate. Moreover, these two compounds caused destabilization of the podosome structure that is necessary for the bone-resorbing activity of osteoclasts, and also attenuated cellular differentiation of monocytes into osteoclasts, without affecting cell viability. Therefore, these findings not only verified anti-osteoclastic effects of our cyt-PTPε inhibitory compounds, but also showed that cyt-PTPε expressed in osteoclasts could be a putative therapeutic target worth considering.
Assuntos
Acetamidas/farmacologia , Inibidores Enzimáticos/farmacologia , Osteoclastos/efeitos dos fármacos , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/antagonistas & inibidores , Tiadiazóis/farmacologia , Acetamidas/química , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Monócitos/efeitos dos fármacos , Osteoclastos/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Relação Estrutura-Atividade , Tiadiazóis/químicaRESUMO
Acanthamoeba polyphaga mimivirus (APMV) is a member of the family of giant viruses, harboring a 1,200 kbp genome within its 700 nm-diameter viral particle. The R214 gene of the APMV genome was recently shown to encode a homologue of the Rab GTPases, molecular switch proteins known to play a pivotal role in the regulation of membrane trafficking that were considered to exist only in eukaryotes. Herein, we report the first crystal structures of GDP- and GTP-bound forms of APMV Rab GTPase, both of which were determined at high resolution. An in-depth structural comparison of APMV Rab with each other and with mammalian Rab homologues led to an atomic-level elucidation of the inactive-active conformational change upon GDP/GTP exchange. APMV Rab GTPase exhibited considerable structural similarity to human Rab5, as previously predicted based on its amino acid sequence. However, it also contains unique structural features differentiating it from mammalian homologues, such as the functional substitution of a phenylalanine residue for the stabilization of the nucleotide's guanine base.
Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Mimiviridae/metabolismo , Proteínas Virais/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Cristalização , Mimiviridae/genética , Modelos Moleculares , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas rab de Ligação ao GTP/genéticaRESUMO
Despite a wealth of persuasive evidence for the involvement of human small C-terminal domain phosphatase 1 (Scp1) in the impairment of neuronal differentiation and in Huntington's disease, small-molecule inhibitors of Scp1 have been rarely reported so far. This study aims to the discovery of both competitive and allosteric Scp1 inhibitors through the two-track virtual screening procedure. By virtue of the improvement of the scoring function by implementing a new molecular solvation energy term and by reoptimizing the atomic charges for the active-site Mg2+ ion cluster, we have been able to identify three allosteric and five competitive Scp1 inhibitors with low-micromolar inhibitory activity. Consistent with the results of kinetic studies on the inhibitory mechanisms, the allosteric inhibitors appear to be accommodated in the peripheral binding pocket through the hydrophobic interactions with the nonpolar residues whereas the competitive ones bind tightly in the active site with a direct coordination to the central Mg2+ ion. Some structural modifications to improve the biochemical potency of the newly identified inhibitors are proposed based on the binding modes estimated with docking simulations.
Assuntos
Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/química , Regulação Alostérica , Sítios de Ligação , Cátions Bivalentes , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Humanos , Cinética , Magnésio/química , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP.
Assuntos
Proteínas Tirosina Fosfatases/química , Streptococcus pyogenes/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Peso Molecular , Fosforilação , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases/metabolismo , Especificidade por SubstratoRESUMO
Protein tyrosine phosphatase-Basophil (PTP-Bas) is a membrane-associated protein tyrosine phosphatase with five PDZ domains and is involved in apoptosis, tumorigenesis, and insulin signaling. The interaction between PTP-Bas and tandem-PH-domain-containing protein 1/2 (TAPP1/2) plays an essential role in the regulation of insulin signaling. Despite its high sequence homology with the other PDZ domains, only the PDZ1 domain of PTP-Bas showed distinct binding specificity for TAPP1/2. Although the interaction between PTP-Bas PDZ1 and TAPP1/2 is a therapeutic target for diabetes, the structural basis for the interaction has not been elucidated. In the present study, we determined the crystal structure of the PTP-Bas PDZ1 domain at 1.6 Å resolution. In addition, we calculated the structural models of complexes of PTP-Bas PDZ1 and the C-terminal peptides of TAPP1/2 (referred to as TAPP1p/2p). Structural comparison with the PTP-Bas PDZ2/RA-GEF2 peptide complex revealed a structural basis for distinct binding specificity of PTP-Bas PDZ1 for TAPP1p/2p peptides. Our high-resolution crystal structure of PTP-Bas PDZ1 will serve as a useful template for rational structure-based design of novel anti-diabetes therapeutics.
Assuntos
Cristalografia por Raios X , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Homologia Estrutural de ProteínaRESUMO
Protein tyrosine phosphatase sigma (PTPσ) is a potential target for the therapeutic treatment of neurological deficits associated with impaired neuronal recovery, as this protein is the receptor for chondroitin sulfate proteoglycan (CSPG), which is known to inhibit neuronal regeneration. Through a high-throughput screening approach started from 6400 representative compounds in the Korea Chemical Bank chemical library, we identified 11 novel PTPσ inhibitors that can be classified as flavonoid derivatives or analogs, with IC50 values ranging from 0.5 to 17.5µM. Biochemical assays and structure-based active site-docking simulation indicate that our inhibitors are accommodated at the catalytic active site of PTPσ as surrogates for the phosphotyrosine group. Treatments of these compounds on PC-12 neuronal cells led to the recovery of neurite extension attenuated by CSPG treatment, demonstrating their potential as antineurodegenerative agents.
Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Neuritos/efeitos dos fármacos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flavonoides/síntese química , Flavonoides/química , Modelos Moleculares , Estrutura Molecular , Neuritos/metabolismo , Células PC12 , Ratos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-AtividadeRESUMO
Polo-like kinases (Plks) are the key regulators of cell cycle progression, the members of which share a kinase domain and a polo-box domain (PBD) that serves as a protein-binding module. While Plk1 is a promising target for antitumor therapy, Plk2 is regarded as a tumor suppressor even though the two Plks commonly recognize the S-pS/T-P motif through their PBD. Herein, we report the crystal structure of the PBD of Plk2 at 2.7 Å. Despite the overall structural similarity with that of Plk1 reflecting their high sequence homology, the crystal structure also contains its own features including the highly ordered loop connecting two subdomains and the absence of 310 -helices in the N-terminal region unlike the PBD of Plk1. Based on the three-dimensional structure, we furthermore could model its interaction with two types of phosphopeptides, one of which was previously screened as the optimal peptide for the PBD of Plk2.
Assuntos
Proteínas de Ciclo Celular/química , Fosfopeptídeos/química , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Motivos de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Fosfopeptídeos/síntese química , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Quinase 1 Polo-LikeRESUMO
Dual-specificity protein phosphatases (DUSPs), which dephosphorylate both phosphoserine/threonine and phosphotyrosine, play vital roles in immune activation, brain function and cell-growth signalling. A family-wide structural library of human DUSPs was constructed based on experimental structure determination supplemented with homology modelling. The catalytic domain of each individual DUSP has characteristic features in the active site and in surface-charge distribution, indicating substrate-interaction specificity. The active-site loop-to-strand switch occurs in a subtype-specific manner, indicating that the switch process is necessary for characteristic substrate interactions in the corresponding DUSPs. A comprehensive analysis of the activity-inhibition profile and active-site geometry of DUSPs revealed a novel role of the active-pocket structure in the substrate specificity of DUSPs. A structure-based analysis of redox responses indicated that the additional cysteine residues are important for the protection of enzyme activity. The family-wide structures of DUSPs form a basis for the understanding of phosphorylation-mediated signal transduction and the development of therapeutics.
Assuntos
Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/classificação , Inibidores Enzimáticos/química , Filogenia , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Fosfatases de Especificidade Dupla/antagonistas & inibidores , Fosfatases de Especificidade Dupla/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Oxirredução , Fosfosserina/química , Fosfotreonina/química , Fosfotirosina/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Transdução de Sinais , Homologia Estrutural de Proteína , Especificidade por SubstratoRESUMO
GDP-bound prenylated Rabs, sequestered by GDI (GDP dissociation inhibitor) in the cytosol, are delivered to destined sub-cellular compartment and subsequently activated by GEFs (guanine nucleotide exchange factors) catalysing GDP-to-GTP exchange. The dissociation of GDI from Rabs is believed to require a GDF (GDI displacement factor). Only two RabGDFs, human PRA-1 and Legionella pneumophila SidM/DrrA, have been identified so far and the molecular mechanism of GDF is elusive. Here, we present the structure of a SidM/DrrA fragment possessing dual GEF and GDF activity in complex with Rab1. SidM/DrrA reconfigures the Switch regions of the GTPase domain of Rab1, as eukaryotic GEFs do toward cognate Rabs. Structure-based mutational analyses show that the surface of SidM/DrrA, catalysing nucleotide exchange, is involved in GDI1 displacement from prenylated Rab1:GDP. In comparison with an eukaryotic GEF TRAPP I, this bacterial GEF/GDF exhibits high binding affinity for Rab1 with GDP retained at the active site, which appears as the key feature for the GDF activity of the protein.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lipossomos/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Inibidores da Dissociação do Nucleotídeo Guanina rho-EspecíficoRESUMO
Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Legionella pneumophila/metabolismo , Legionelose/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Endossomos/genética , Endossomos/microbiologia , Endossomos/patologia , Células HeLa , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Legionelose/genética , Legionelose/patologia , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/patologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/genéticaRESUMO
Protein tyrosine phosphatase non-receptor type 21 (PTPN21) is a cytosolic protein tyrosine phosphatase that regulates cell growth and invasion. Due to its oncogenic properties, PTPN21 has recently emerged as a potential therapeutic target for cancer. In this study, the three-dimensional structure of the PTPN21 FERM domain was determined at 2.1â Å resolution by X-ray crystallography. The crystal structure showed that this domain harbors canonical FERM folding and consists of three subdomains that are tightly packed via highly conserved intramolecular hydrophobic interactions. Consistent with this, the PTPN21 FERM domain shares high structural homology with several other FERM domains. Moreover, structural superimposition demonstrated two putative protein-binding sites of the PTPN21 FERM domain, which are presumed to be associated with interaction with its binding partner, kinesin family member 1C. Thus, these data suggest that the FERM domain of PTPN21 serves as a module that mediates protein-protein interaction, like other FERM domains.
Assuntos
Modelos Moleculares , Humanos , Cristalografia por Raios X , Ligação Proteica , Sítios de Ligação , Sequência de Aminoácidos , Domínios Proteicos , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.