Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Hum Mol Genet ; 32(9): 1575-1588, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36637428

RESUMO

Folic acid (synthetic folate, FA) is consumed in excess in North America and may interact with common pathogenic variants in methylenetetrahydrofolate reductase (MTHFR); the most prevalent inborn error of folate metabolism with wide-ranging obesity-related comorbidities. While preclinical murine models have been valuable to inform on diet-gene interactions, a recent Folate Expert panel has encouraged validation of new animal models. In this study, we characterized a novel zebrafish model of mthfr deficiency and evaluated the effects of genetic loss of mthfr function and FA supplementation during embryonic development on energy homeostasis and metabolism. mthfr-deficient zebrafish were generated using CRISPR mutagenesis and supplemented with no FA (control, 0FA) or 100 µm FA (100FA) throughout embryonic development (0-5 days postfertilization). We show that the genetic loss of mthfr function in zebrafish recapitulates key biochemical hallmarks reported in MTHFR deficiency in humans and leads to greater lipid accumulation and aberrant cholesterol metabolism as reported in the Mthfr murine model. In mthfr-deficient zebrafish, energy homeostasis was also impaired as indicated by altered food intake, reduced metabolic rate and lower expression of central energy-regulatory genes. Microglia abundance, involved in healthy neuronal development, was also reduced. FA supplementation to control zebrafish mimicked many of the adverse effects of mthfr deficiency, some of which were also exacerbated in mthfr-deficient zebrafish. Together, these findings support the translatability of the mthfr-deficient zebrafish as a preclinical model in folate research.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Peixe-Zebra , Humanos , Gravidez , Feminino , Camundongos , Animais , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácido Fólico , Suplementos Nutricionais , Homeostase , Desenvolvimento Embrionário/genética
2.
J Nutr ; 151(4): 857-865, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561219

RESUMO

BACKGROUND: North American women consume high folic acid (FA), but most are not meeting the adequate intakes for choline. High-FA gestational diets induce an obesogenic phenotype in rat offspring. It is unclear if imbalances between FA and other methyl-nutrients (i.e., choline) account for these effects. OBJECTIVE: This study investigated the interaction of choline and FA in gestational diets on food intake, body weight, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring. METHODS: Pregnant Wistar rats were fed an AIN-93G diet with recommended choline and FA [RCRF; 1-fold, control] or high (5-fold) FA with choline at 0.5-fold [low choline and high folic acid (LCHF)], 1-fold [recommended choline and high folic acid (RCHF)], or 2.5-fold [high choline and high folic acid (HCHF)]. Male offspring were weaned to an RCRF diet for 20 wk. Food intake, weight gain, plasma energy-regulatory hormones, brain and plasma one-carbon metabolites, and RNA sequencing (RNA-seq) in pup hypothalamuses were assessed. RESULTS: Adult offspring from LCHF and RCHF, but not HCHF, gestational diets had 10% higher food intake and weight gain than controls (P < 0.01). HCHF newborn pups had lower plasma insulin and leptin compared with LCHF and RCHF pups (P < 0.05), respectively. Pup brain choline (P < 0.05) and betaine (P < 0.01) were 22-33% higher in HCHF pups compared with LCHF pups; methionine was ∼23% lower after all high FA diets compared with RCRF (P < 0.01). LCHF adult offspring had lower brain choline (P < 0.05) than all groups and lower plasma 5-methyltetrahydrofolate (P < 0.05) than RCRF and RCHF groups. HCHF adult offspring had lower plasma cystathionine (P < 0.05) than LCHF adult offspring and lower homocysteine (P < 0.01) than RCHF and RCRF adult offspring. RNA-seq identified 144 differentially expressed genes in the hypothalamus of HCHF newborns compared with controls. CONCLUSIONS: Increased choline in gestational diets modified the programming effects of high FA on long-term food intake regulation, plasma energy-regulatory hormones, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring, emphasizing a need for more attention to the choline and FA balance in maternal diets.


Assuntos
Regulação do Apetite/fisiologia , Colina/administração & dosagem , Ácido Fólico/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Encéfalo/metabolismo , Colina/sangue , Ingestão de Alimentos/fisiologia , Feminino , Ácido Fólico/sangue , Expressão Gênica , Hipotálamo/metabolismo , Insulina/sangue , Gordura Intra-Abdominal/anatomia & histologia , Leptina/sangue , Masculino , Troca Materno-Fetal/fisiologia , Modelos Animais , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Desmame
3.
J Nutr ; 150(12): 3103-3113, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33024990

RESUMO

BACKGROUND: Increasing the total protein content and reducing the casein to whey ratio in milks consumed with breakfast cereal reduce postprandial blood glucose (BG). OBJECTIVES: We aimed to explore associations between plasma amino acids (AAs), BG, and glucoregulatory hormones. METHODS: In this repeated-measures design, 12 healthy adults consumed cereal (58 g) and milks (250 mL) with 3.1 wt% or high 9.3 wt% protein concentrations and with casein to whey ratios of either 80:20 or 40:60. Blood was collected at 0, 30, 60, 120, 140, 170, and 200 min for measurement of the primary outcome, BG, and for the exploratory outcomes such as plasma AA, gastric emptying, insulin (INS), and glucoregulatory hormones. Measures were made prior to and after an ad libitum lunch at 120 min. Exploratory correlations were conducted to determine associations between outcomes. RESULTS: Pre-lunch plasma AA groups [total (TAA), essential (EAA), BCAA, and nonessential (NEAA)] were higher after 9.3 wt% than 3.1 wt% milks by 12.7%, 21.4%, 20.9%, and 7.6%, respectively (P ≤ 0.05), while post-lunch AA groups were higher by 10.9%, 19.8%, 18.8%, and 6.0%, respectively (P ≤ 0.05). Except for NEAA, pre-lunch AAs were higher after 40:60 than 80:20 ratio milks by 4.5%, 8.3%, and 9.3% (P ≤ 0.05). When pooled by all treatments, pre-lunch AA groups associated negatively with BG (r/ρ ≥ -0.45, P ≤ 0.05), but post-lunch only TAA and NEAA correlated (r ≥ -0.37, P < 0.05). Pre-lunch BG was inversely associated with Leu, Ile, Lys, Met, Thr, Cys-Cys, Asn, and Gln (r/ρ ≥ -0.46, P ≤ 0.05), but post-lunch, only with Thr, Ala, and Gly (r ≥ -0.50, P ≤ 0.05). Pre-lunch associations between AA groups and INS were not found. CONCLUSIONS: Protein concentration and the ratio of casein to whey in milks consumed at breakfast with cereal affect plasma AA concentrations and their associations with decreased BG. The decrease in BG could be explained by INS-independent mechanisms. This trial was registered at www.clinicaltrials.gov as NCT02471092.


Assuntos
Aminoácidos/sangue , Glicemia/efeitos dos fármacos , Caseínas/química , Leite/química , Soro do Leite/química , Animais , Desjejum , Estudos Cross-Over , Grão Comestível , Feminino , Humanos , Masculino , Adulto Jovem
4.
Nutr Neurosci ; 23(2): 149-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29848222

RESUMO

Background: Folic acid plays an important role in early brain development of offspring, including proliferation and differentiation of neural stem cells known to impact the function of food intake regulatory pathways. Excess (10-fold) intakes of folic acid in the gestational diet have been linked to increased food intake and obesity in male rat offspring post-weaning.Objective: The present study examined the effects of folic acid content in gestational diets on the development and function of two hypothalamic neuronal populations, neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), within food intake regulatory pathways of male Wistar rat offspring at birth and post-weaning.Results: Folic acid fed at 5.0-fold above recommended levels (5RF) to Wistar dams during pregnancy increased the number of mature NPY-positive neurons in the hypothalamus of male offspring, compared to control (RF), 0RF, 2.5RF, and 10RF at birth. Folic acid content had no effect on expression and maturation of POMC-positive neurons. Body weight and food intake were higher in all treatment groups (2.5-, 5.0-, and 10.0-fold folic acid) from birth to 9 weeks post-weaning compared to control. Increased body weight and food intake at 9-weeks post-weaning were accompanied by a reduced activation of POMC neurons in the arcuate nucleus (ARC).Conclusion: Gestational folic acid content modulates expression of mature hypothalamic NPY-positive neurons at birth and activation of POMC-positive neurons at 9-weeks post-weaning in the ARC of male Wistar rat offspring which may contribute to higher body weight and food intake later in life.


Assuntos
Regulação do Apetite/fisiologia , Dieta , Ácido Fólico/administração & dosagem , Hipotálamo/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Ácido Fólico/análogos & derivados , Ácido Fólico/análise , Hipotálamo/citologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Neurônios/química , Neurônios/fisiologia , Neuropeptídeo Y/análise , Gravidez , Pró-Opiomelanocortina/análise , Ratos , Ratos Wistar , Desmame
5.
Clin Endocrinol (Oxf) ; 91(2): 295-303, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31055857

RESUMO

OBJECTIVE: Chronic testosterone blood concentrations associate with food intake (FI), but acute effects of testosterone on appetite and effect of protein and glucose consumption on testosterone response have had little examination. METHODS: In a randomized, crossover study, twenty-three adolescent (12-18 years old) males were given beverages containing either: (a) whey protein (1 g/kg body weight), (b) glucose (1 g/kg body weight) or (c) a calorie-free control (C). Plasma testosterone, luteinizing hormone (LH), GLP-1 (active), ghrelin (acylated), glucose, insulin and subjective appetite were measured prior (0) and at 20, 35 and 65 minutes after the consumption of the beverage. FI at an ad libitum pizza meal was assessed at 85 minutes. RESULTS: Testosterone decreased acutely to 20 minutes after both protein and glucose with the decrease continuing after protein but not glucose to 65 minutes (P = 0.0382). LH was also decreased by both protein and glucose, but glucose had no effect at 20 minutes in contrast to protein (P < 0.001). Plasma testosterone concentration correlated positively with LH (r = 0.58762, P < 0.0001) and negatively with GLP-1 (r = -0.50656, P = 0.0003). No associations with appetite, ghrelin or glycaemic markers were found. Food intake was not affected by treatments. CONCLUSION: Protein or glucose ingestion results in acute decreases in both plasma testosterone and LH in adolescent males. The physiological significance of this response remains to be determined as no support for testosterone's role in acute regulation of food intake was found.


Assuntos
Apetite/efeitos dos fármacos , Bebidas , Glucose/farmacologia , Testosterona/sangue , Proteínas do Soro do Leite/farmacologia , Adolescente , Apetite/fisiologia , Glicemia/análise , Criança , Estudos Cross-Over , Ingestão de Alimentos/fisiologia , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucose/administração & dosagem , Humanos , Insulina/sangue , Hormônio Luteinizante/sangue , Masculino , Proteínas do Soro do Leite/administração & dosagem
6.
Appetite ; 120: 92-99, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843973

RESUMO

AIMS: This study investigated the effects of adding monosodium glutamate (MSG) to carrot soup with or without whey protein, on subjective appetite, food intake (FI) and satiety hormones in healthy young men. METHODS: Two experiments were conducted using a repeated-measures, within-subject, crossover design. In exp-1 healthy young men (n = 28) consumed water alone (500 mL), or carrot soup (500 g) with or without MSG (5 g, 1% w/w) or whey protein enriched (36 g) carrot soup with or without MSG (5 g, 1% w/w). Subjective appetite was measured post-treatment and FI measured at a meal at 120 min. In exp-2 (n = 15) the same treatments except for water were used. In addition to subjective appetite and FI, blood glucose, insulin, glucose like peptide 1 (GLP-1), C-peptide and ghrelin were measured. RESULTS: Adding MSG to carrot soup or whey protein enriched carrot soup did not affect FI. However, in exp-1 the addition of both MSG and protein increased fullness, and when MSG was added to carrot soup reduced desire to eat. In exp-2, average post-treatment appetite (5-120 min) was lower after carrot soup with MSG and protein than all other treatments (P < 0.05). In exp-2, carrot soup with MSG and protein, but not with protein alone, increased post-treatment insulin and C-peptide, and lowered blood glucose in comparison to carrot soup with no additions (P < 0.05). CONCLUSION: Adding MSG alone, or in combination with whey protein, to carrot soups did not affect FI. However, MSG increased fullness and reduced desire to eat, as well as subjective appetite, and when added to protein decreased blood glucose and increased insulin and C-peptide, offering some support for the hypothesis that MSG in the gut signals protein consumption.


Assuntos
Apetite/efeitos dos fármacos , Glicemia/metabolismo , Hormônios Gastrointestinais/sangue , Insulina/sangue , Glutamato de Sódio/administração & dosagem , Proteínas do Soro do Leite/administração & dosagem , Adulto , Índice de Massa Corporal , Estudos Cross-Over , Dieta , Humanos , Masculino , Refeições , Ensaios Clínicos Controlados Aleatórios como Assunto , Saciação/efeitos dos fármacos , Glutamato de Sódio/sangue , Paladar , Adulto Jovem
7.
Circulation ; 127(11): 1229-40, e1-21, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23410942

RESUMO

BACKGROUND: Reactive oxygen species are major determinants of vascular aging. JunD, a member of the activated protein-1 family of transcription factors, is emerging as a major gatekeeper against oxidative stress. However, its contribution to reactive oxygen species homeostasis in the vasculature remains unknown. METHODS AND RESULTS: Endothelium-dependent vasorelaxation was impaired in young and old JunD(-/-) mice (6 and 22 months old) compared with age-matched wild-type mice. JunD(-/-) mice displayed an age-independent decline in endothelial nitric oxide release and endothelial nitric oxide synthase activity and increased mitochondrial superoxide formation and peroxynitrite levels. Furthermore, vascular expression and activity of the free radical scavengers manganese and extracellular superoxide dismutase and aldehyde dehydrogenase 2 were reduced, whereas the NADPH oxidase subunits p47phox, Nox2, and Nox4 were upregulated. These redox changes were associated with premature vascular aging, as shown by reduced telomerase activity, increased ß-galactosidase-positive cells, upregulation of the senescence markers p16(INK4a) and p53, and mitochondrial disruption. Interestingly, old wild-type mice showed a reduction in JunD expression and transcriptional activity resulting from promoter hypermethylation and binding with tumor suppressor menin, respectively. In contrast, JunD overexpression blunted age-induced endothelial dysfunction. In human endothelial cells, JunD knockdown exerted a similar impairment of the O2(-)/nitric oxide balance that was prevented by concomitant NADPH inhibition. In parallel, JunD expression was reduced in monocytes from old versus young healthy subjects and correlated with mRNA levels of scavenging and oxidant enzymes. CONCLUSIONS: JunD provides protection in aging-induced endothelial dysfunction and may represent a novel target to prevent reactive oxygen species-driven vascular aging.


Assuntos
Envelhecimento/fisiologia , Endotélio Vascular/fisiopatologia , Deleção de Genes , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-jun/deficiência , Animais , Endotélio Vascular/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/fisiologia , Modelos Animais , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/fisiologia , Espécies Reativas de Oxigênio/metabolismo
8.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474824

RESUMO

The environment of the test laboratory affects the reproducibility of treatment effects on physiological phenotypes of rodents and may be attributed to the plasticity of the epigenome due to nutrient-gene-environment interactions. Here, we explored the reproducibility of adding a multi-vitamin-mineral (MVM) mix to a nutrient-balanced high-fat (HF) diet on obesity, insulin resistance (IR), and gene expression in the tissues of adult male mice. Experiments of the same design were conducted in three independent animal facilities. Adult C57BL/6J male mice were fed an HF diet for 6 weeks (diet induced-obesity model) and then continued for 9-12 weeks on the HF diet with or without 5-fold additions of vitamins A, B1, B6, B12, Zn, and 2-fold Se. The addition of the MVM affected body weight, fat mass, gene expression, and markers of IR in all three locations (p < 0.05). However, the direction of the main effects was influenced by the interaction with the experimental location and its associated environmental conditions known to affect the epigenome. In conclusion, MVM supplementation influenced phenotypes and expression of genes related to adipose function in obese adult male mice, but the experimental location and its associated conditions were significant interacting factors. Preclinical studies investigating the relationship between diet and metabolic outcomes should acknowledge the plasticity of the epigenome and implement measures to reproduce studies in different locations.


Assuntos
Resistência à Insulina , Micronutrientes , Masculino , Animais , Camundongos , Micronutrientes/uso terapêutico , Reprodutibilidade dos Testes , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Dieta Hiperlipídica , Fenótipo , Camundongos Obesos
9.
Neurosci Biobehav Rev ; 157: 105512, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128771

RESUMO

Nutriture in utero is essential for fetal brain development through the regulation of neural stem cell proliferation, differentiation, and apoptosis, and has a long-lasting impact on risk of disease in offspring. This review examines the role of maternal methyl donor micronutrients in neuronal development and programming of physiological functions of the hypothalamus, with a focus on later-life metabolic outcomes. Although evidence is mainly derived from preclinical studies, recent research shows that methyl donor micronutrients (e.g., folic acid and choline) are critical for neuronal development of energy homeostatic pathways and the programming of characteristics of the metabolic syndrome in mothers and their children. Both folic acid and choline are active in one-carbon metabolism with their impact on epigenetic modification of gene expression. We conclude that an imbalance of folic acid and choline intake during gestation disrupts DNA methylation patterns affecting mechanisms of hypothalamic development, and thus elevates metabolic disease risk. Further investigation, including studies to determine translatability to humans, is required.


Assuntos
Doenças Metabólicas , Micronutrientes , Criança , Humanos , Micronutrientes/metabolismo , Ácido Fólico , Colina , Metilação de DNA
10.
Mol Nutr Food Res ; 67(18): e2300199, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526337

RESUMO

SCOPE: Obesity and insulin resistance (IR) are associated with epigenetic changes of gene expression. However, the relationship between micronutrients, epigenetic regulation of gene expression, and IR during development of diet-induced obesity has yet to be defined. Our objective is to describe the effect of micronutrient addition to diets on IR and its related genes during obesity development. METHODS AND RESULTS: Male C57BL/6J mice are fed a high-fat (HFD) or low-fat (LFD) diets with or without a multi-vitamin mineral mix (MVM) addition containing vitamins A, B1, B6, B12, and Zn, and Se for 9 weeks. Compared to LFD mice, HFD mice have higher body weight, IR, fasting glucose, insulin, C-peptide, leptin, and hepatic triglyceride concentrations, and dysregulated gene expression in liver, muscle, pancreas, and fat tissues (p < 0.05). The addition of MVM reduces these HFD-induced effects. HFD downregulates 27 genes associated with insulin regulation and adipose tissue function across all tissues by an average of 47% and upregulates five genes by 230% (p < 0.001). Adding MVM downregulates five genes and upregulates one in HFD-fed mice. Both HFD and MVM alter one-carbon metabolites. CONCLUSION: Addition of micronutrients to the HFD decreases IR and modifies associated gene expression in obese and lean mice.


Assuntos
Resistência à Insulina , Masculino , Animais , Camundongos , Resistência à Insulina/fisiologia , Dieta Hiperlipídica/efeitos adversos , Micronutrientes/farmacologia , Epigênese Genética , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Insulina/metabolismo , Genes Reguladores
11.
Br J Clin Pharmacol ; 74(1): 141-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22283728

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: • Angiotensin II receptor blockers improve endothelial cell-dependent vasodilation in patients with hypertension through suppression of angiotensin II type 1 receptors but may have additional and differential effects on endothelial nitric oxide synthase (eNOS) function. WHAT THIS STUDY ADDS: • The key finding from this study is that angiotensin II receptor blockers (ARBs) differentially enhanced nitric oxide (NO) release in a manner influenced by certain genetic variants of eNOS. This finding provides new insights into the effects of ARBs on endothelial cell-dependent vasodilation and eNOS function that are of high importance in vascular medicine and clinical pharmacology. AIM Angiotensin II receptor blockers (ARBs) improve endothelial cell (EC)-dependent vasodilation in patients with hypertension through suppression of angiotensin II type 1 receptors but may have additional and differential effects on endothelial nitric oxide (NO) synthase (eNOS) function. To investigate this question, we tested the effects of various ARBs on NO release in ECs from multiple donors, including those with eNOS genetic variants linked to higher cardiovascular risk. METHODS: The effects of ARBs (losartan, olmesartan, telmisartan, valsartan), at 1 µm, on NO release were measured with nanosensors in human umbilical vein ECs obtained from 18 donors. NO release was stimulated with calcium ionophore (1 µm) and its maximal concentration was correlated with eNOS variants. The eNOS variants were determined by a single nucleotide polymorphism in the promoter region (T-786C) and in the exon 7 (G894T), linked to changes in NO metabolism. RESULTS All of the ARBs caused an increase in NO release as compared with untreated samples (P < 0.01, n= 4-5 in all eNOS variants). However, maximal NO production was differentially influenced by eNOS genotype. Olmesartan increased maximal NO release by 30%, which was significantly greater (P < 0.01, n= 4-5 in all eNOS variants) than increases observed with other ARBs. CONCLUSIONS: The ARBs differentially enhanced NO release in ECs in a manner influenced by eNOS single nucleotide polymorphisms. These findings provide new insights into the effects of ARBs on EC-dependent vasodilation and eNOS function.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico/metabolismo , Polimorfismo de Nucleotídeo Único , Bloqueadores do Receptor Tipo 1 de Angiotensina II/metabolismo , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imidazóis/farmacologia , Losartan/farmacologia , Óxido Nítrico/genética , Telmisartan , Tetrazóis/farmacologia , Veias Umbilicais/citologia , Valina/análogos & derivados , Valina/farmacologia , Valsartana , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética
12.
J Cardiovasc Pharmacol ; 60(5): 467-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22932707

RESUMO

Most patients with diabetes also have hypertension, a risk factor associated with atherothrombotic disease and characterized by endothelial cell (EC) dysfunction and loss of nitric oxide (NO) bioavailability. Recent studies suggest a possible antihypertensive effect with dipeptidyl peptidase-4 (DPP4) inhibition; however, the underlying mechanism is not understood. In this study, we tested the effects of the DPP4 inhibitor, saxagliptin, on EC function, blood pressure, and soluble intercellular adhesion molecule 1 (sICAM-1) levels in hypertensive rats. Spontaneously hypertensive rats were treated with vehicle or saxagliptin (10 mg·kg(-1)·day(-1)) for 8 weeks. NO and peroxynitrite (ONOO(-)) release from aortic and glomerular ECs was stimulated with calcium ionophore and measured using electrochemical nanosensor technology. Changes in EC function were correlated with fasting glucose levels. Saxagliptin treatment was observed to increase aortic and glomerular NO release by 22% (P < 0.001) and 23% (P < 0.001), respectively, with comparable reductions in ONOO(-) levels; the NO/ONOO(-) ratio increased by >50% in both EC types (P < 0.001) as compared with vehicle. Saxagliptin also reduced mean arterial pressure from 170 ± 10 to 158 ± 10 mm Hg (P < 0.001) and decreased sICAM-1 levels by 37% (P < 0.01). The results of this study suggest that DPP4 inhibition reduces blood pressure and inflammation in hypertensive rats while increasing NO bioavailability.


Assuntos
Adamantano/análogos & derivados , Pressão Sanguínea/efeitos dos fármacos , Dipeptídeos/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipertensão/tratamento farmacológico , Molécula 1 de Adesão Intercelular/sangue , Óxido Nítrico/metabolismo , Adamantano/administração & dosagem , Adamantano/farmacologia , Adamantano/uso terapêutico , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Dipeptídeos/administração & dosagem , Dipeptídeos/farmacologia , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Teste de Tolerância a Glucose , Hipertensão/enzimologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Insulina/sangue , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Masculino , Ácido Peroxinitroso/metabolismo , Ratos , Ratos Zucker
13.
Nutr Rev ; 80(11): 2178-2197, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442434

RESUMO

The role of folate, in its synthetic and bioactive form, as an in utero modifier of metabolic outcomes in mothers and offspring is examined in this review. During pregnancy, a continuum of adaptive changes occurs to support maternal and fetal requirements. However, an unfavorable in utero environment may lead to permanent changes in cellular and physiological functions, adversely affecting the development of the child and postpartum health of the mother. In North American countries, synthetic folic acid (FA) is overconsumed by pregnant women, and uncertainty exists about its potential unintended health effects. Because the metabolism of FA is different than that of other folate forms, it may modulate disease risk differently. The bioactive form of folate, 5-methyltetrahydrofolic acid, has emerged as a popular alternative to FA, but clinical studies comparing their effects during pregnancy are limited. Current evidence points to the need for caution when maternal intake of either folate form exceed recommended amounts. Research directed toward defining an optimal folate dose and form for healthy pregnancy and long-term metabolic outcomes in mothers and children is urgently needed.


Assuntos
Ácido Fólico , Cuidado Pré-Natal , Criança , Suplementos Nutricionais , Feminino , Feto , Humanos , América do Norte , Gravidez
14.
Nutrients ; 13(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923230

RESUMO

Maternal choline intakes are below recommendations, potentially impairing the child's later-life metabolic health. This study aims to elucidate the interaction between the choline content of the gestational diet (GD) and fat content of the post-weaning diet (PWD) on metabolic phenotype of male Wistar rats. Pregnant Wistar rats were fed a standard rodent diet (AIN-93G) with either recommended choline (RC, 1 g/kg diet choline bitartrate) or high choline (HC, 2.5-fold). Male pups were weaned to either a normal (16%) fat (NF) or a high (45%) fat (HF) diet for 17 weeks. Body weight, visceral adiposity, food intake, energy expenditure, plasma hormones, triglycerides, and hepatic fatty acids were measured. HC-HF offspring had 7% lower body weight but not food intake, and lower adiposity, plasma triglycerides, and insulin resistance compared to RC-HF. They also had increased hepatic n-3 fatty acids and a reduced n-6/n-3 and C 18:1 n-9/C18:0 ratios. In contrast, HC-NF offspring had 6-8% higher cumulative food intake and body weight, as well as increased leptin and elevated hepatic C16:1 n-7/C16:0 ratio compared to RC-NF. Therefore, gestational choline supplementation associated with improved long-term regulation of several biomarkers of the metabolic syndrome in male Wistar rat offspring fed a HF, but not a NF, PWD.


Assuntos
Colina/farmacologia , Dieta Hiperlipídica , Fenômenos Fisiológicos da Nutrição Materna , Síndrome Metabólica/prevenção & controle , Animais , Colina/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar , Desmame
15.
Nutrients ; 13(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925570

RESUMO

Supplementation with [6S]-5-methyltetrahydrofolic acid (MTHF) is recommended as an alternative to folic acid (FA) in prenatal supplements. This study compared equimolar gestational FA and MTHF diets on energy regulation of female offspring. Wistar rats were fed an AIN-93G diet with recommended (2 mg/kg diet) or 5-fold (5X) intakes of MTHF or FA. At weaning, female offspring were fed a 45% fat diet until 19 weeks. The 5X-MTHF offspring had higher body weight (>15%), food intake (8%), light-cycle energy expenditure, and lower activity compared to 5X-FA offspring (p < 0.05). Both the 5X offspring had higher plasma levels of the anorectic hormone leptin at birth (60%) and at 19 weeks (40%), and lower liver weight and total liver lipids compared to the 1X offspring (p < 0.05). Hypothalamic mRNA expression of leptin receptor (ObRb) was lower, and of suppressor of cytokine signaling-3 (Socs3) was higher in the 5X-MTHF offspring (p < 0.05), suggesting central leptin dysregulation. In contrast, the 5X-FA offspring had higher expression of genes encoding for dopamine and GABA- neurotransmitter receptors (p < 0.01), consistent with their phenotype and reduced food intake. When fed folate diets at the requirement level, no differences were found due to form in the offspring. We conclude that MTHF compared to FA consumed at high levels in the gestational diets program central and peripheral mechanisms to favour increased weight gain in the offspring. These pre-clinical findings caution against high gestational intakes of folates of either form and encourage clinical trials examining their long-term health effects when consumed during pregnancy.


Assuntos
Peso Corporal/efeitos dos fármacos , Dieta/métodos , Ingestão de Energia/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Ácido Fólico/farmacologia , Tetra-Hidrofolatos/farmacologia , Animais , Animais Recém-Nascidos , Metabolismo Energético/efeitos dos fármacos , Feminino , Ácido Fólico/administração & dosagem , Camundongos , Modelos Animais , Gravidez , Ratos Wistar , Tetra-Hidrofolatos/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Complexo Vitamínico B/farmacologia
16.
Food Funct ; 11(4): 3066-3072, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32191234

RESUMO

Food source has a significant impact on levels of fatty acids and their derivatives, fatty acid ethanolamides (FAEs), in the small intestine and brain. Among non-essential fatty acids, oleic acid and its FAE acutely reduce food intake. However, effects of the essential α-linolenic acid, linoleic acid, and their FAEs on appetite regulation remain undefined. This study tested the hypothesis that α-linolenic acid and linoleic acid mediate acute suppression of food intake through their corresponding FAEs, α-linolenoylethanolamide and linoleoylethanolamide, respectively. To allow for the differentiation of the effects of FAEs and their parent fatty acids, male Wistar rats were injected intraperitoneally with α-linolenic acid, linoleic acid, α-linolenoylethanolamide and linoleoylethanolamide after a 12-hour overnight fast. Short-term food intake, plasma and brain FAE status, and plasma concentrations of insulin and leptin were measured to determine whether these hormones mediate the anorectic effect of FAEs. Both ethanolamides, but not their parent fatty acids, acutely suppressed food intake up to one hour post-treatment and this effect was independent of insulin and leptin hormones. In conclusion, essential α-linolenic and linoleic fatty acids mediate acute suppression of food intake through their corresponding FAEs. These findings may aid in the further research of FAEs as potential therapeutic agents for the management and treatment of obesity.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Ácido Linoleico , Ácidos Linoleicos/administração & dosagem , Obesidade/prevenção & controle , Alcamidas Poli-Insaturadas/administração & dosagem , Ácido alfa-Linolênico , Animais , Modelos Animais de Doenças , Alimento Funcional , Ácidos Linoleicos/farmacologia , Masculino , Alcamidas Poli-Insaturadas/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar
17.
Nutrients ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375730

RESUMO

[6S]-5-methyltetrahydrofolic acid (MTHF) is a proposed replacement for folic acid (FA) in diets and prenatal supplements. This study compared the effects of these two forms on maternal metabolism and hypothalamic gene expression. Pregnant Wistar rats received an AIN-93G diet with recommended FA (1X, 2 mg/kg, control), 5X-FA or equimolar levels of MTHF. During lactation they received the control diet and then a high fat diet for 19-weeks post-weaning. Body weight, adiposity, food intake, energy expenditure, plasma hormones, folate, and 1-carbon metabolites were measured. RNA-sequencing of the hypothalamus was conducted at parturition. Weight-loss from weaning to 1-week post-weaning was less in dams fed either form of the 5X vs. 1X folate diets, but final weight-gain was higher in 5X-MTHF vs. 5X-FA dams. Both doses of the MTHF diets led to 8% higher food intake and associated with lower plasma leptin at parturition, but higher leptin at 19-weeks and insulin resistance at 1-week post-weaning. RNA-sequencing revealed 279 differentially expressed genes in the hypothalamus in 5X-MTHF vs. 5X-FA dams. These findings indicate that MTHF and FA differ in their programing effects on maternal phenotype, and a potential adverse role of either form when given at the higher doses.


Assuntos
Dieta , Ácido Fólico/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Fenótipo , Tetra-Hidrofolatos/administração & dosagem , Animais , Dieta Hiperlipídica , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Ingestão de Alimentos , Metabolismo Energético/efeitos dos fármacos , Feminino , Resistência à Insulina , Lactação/fisiologia , Leptina/sangue , Parto , Gravidez , Ratos , Ratos Wistar , Desmame , Aumento de Peso/efeitos dos fármacos
18.
J Nutr Biochem ; 83: 108414, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32544644

RESUMO

Maternal metabolism begins to return to homeostasis (re-set) following birth and is accelerated by lactation. Delay in metabolic re-set may contribute to postpartum weight retention and later-life metabolic consequences. Folic acid (FA) is essential during pregnancy but inadequate intakes may alter 1-carbon metabolism, consequently affecting energy homeostatic systems. Our objectives were to examine the effects of FA content 1)below and 2)above requirements during pregnancy on the re-set of body weight, markers of hepatic 1-carbon metabolism and central and peripheral energy metabolic pathways in Wistar rat mothers early post-weaning (PW) compared to pregnant controls. Pregnant Wistar rats were fed an AIN-93G diet with FA at 0X, 1X (control, 2 mg FA/kg) or a range above requirements at 2.5X, 5X or 10X recommended levels then the control diet during lactation up to 1 week PW. Dams fed below (0X) or above (5X and 10X) FA requirements had delayed weight-loss from weaning up to 1 week PW, higher plasma insulin and HOMA-IR and changes in glucose and lipid metabolism-regulating genes in muscle, but not liver or adipose tissue compared to controls. Expression of folate-related genes in liver were lower in high FA fed dams. Central food intake neurons were not affected by FA diets. In conclusion, intakes of FA below (0X) or above (5X, 10X) requirements during pregnancy delayed weight-loss, dysregulated 1-carbon pathways in the liver and peripheral energy metabolic pathways in the Wistar rat mother up to 4 weeks after dietary exposure; potentially programming long-term negative metabolic effects and that of her future offspring.


Assuntos
Animais Recém-Nascidos/metabolismo , Ácido Fólico/metabolismo , Gravidez/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Feminino , Homeostase , Humanos , Lactação , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Ratos , Ratos Wistar
19.
Mol Nutr Food Res ; 64(9): e1901178, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32110848

RESUMO

SCOPE: High-folic-acid diets during pregnancy result in obesity in the offspring, associated with altered DNA-methylation of hypothalamic food intake neurons. Like folic acid, the methyl-donor choline modulates foetal brain development, but its long-term programing effects on energy regulation remain undefined. This study aims to describe the effect of choline intake during pregnancy on offspring phenotype and hypothalamic energy-regulatory mechanisms. METHODS AND RESULTS: Wistar rat dams are fed an AIN-93G diet with recommended choline (RC, 1 g kg-1 diet), low choline (LC, 0.5-fold), or high choline (HC, 2.5-fold) during pregnancy. Male pups are terminated at birth and 17 weeks post-weaning. Brain 1-carbon metabolites, body weight, food intake, energy expenditure, plasma hormones, and protein expression of hypothalamic neuropeptides are measured. HC pups have higher expression of the orexigenic neuropeptide-Y neurons at birth, consistent with higher cumulative food intake and body weight gain post-weaning compared to RC and LC offspring. LC pups have lower leptin receptor expression at birth and lower energy expenditure and activity during adulthood. CONCLUSION: Choline content of diets that are consumed by rats during pregnancy affects the later-life phenotype of offspring, associated with altered in utero programing of hypothalamic food intake regulation.


Assuntos
Colina/farmacologia , Metabolismo Energético , Hipotálamo/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Animais , Peso Corporal , Colina/metabolismo , Ingestão de Alimentos , Feminino , Lactação , Masculino , Neuropeptídeos/metabolismo , Gravidez , Ratos Wistar , Desmame
20.
Appl Physiol Nutr Metab ; 43(10): 979-987, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29590534

RESUMO

Our previous study showed that interleukin-6 (IL-6) is associated with suppression of appetite after high-intensity exercise (HIEX), but an independent role in food intake (FI) was not defined. We hypothesized that IL-6 suppresses appetite and FI, independently of appetite hormones, after HIEX in normal-weight (NW) boys. We investigated the effect of HIEX, with and without the inflammation inhibitor ibuprofen (IBU), on IL-6, other biomarkers of inflammation and appetite, FI, and ratings of appetite in NW boys. Fifteen NW boys (aged 13-18 years) were randomly assigned in a crossover design to 4 sessions: (i) water and rest, (ii) IBU and rest, (iii) water and HIEX, and (iv) IBU and HIEX. HIEX consisted of three 10-min bouts of exercise at 75% of maximal oxygen uptake with 90 s of active rest between bouts. IBU (300 mg) was given as a liquid suspension. FI, ratings of appetite, and plasma biomarkers of appetite, inflammation, stress, and glucose control were measured. FI was not affected by HIEX or IBU. Appetite increased over time (p = 0.002) but was lower after HIEX (p < 0.001) and not affected by IBU. HIEX, but not IBU, resulted in higher levels of IL-6 (p < 0.001) and cortisol (p < 0.001) and lower active ghrelin (p < 0.001). IL-6 correlated with active ghrelin (r = 0.37; p = 0.036) and cortisol (r = 0.26; p = 0.049). An independent role for IL-6 in appetite suppression was not supported. However, IL-6 was correlated with active ghrelin and cortisol, thus potentially mediating appetite via these interactions.


Assuntos
Comportamento do Adolescente , Anorexia/sangue , Regulação do Apetite , Ingestão de Alimentos , Exercício Físico , Interleucina-6/sangue , Adolescente , Anorexia/diagnóstico , Anorexia/etiologia , Anorexia/psicologia , Biomarcadores/sangue , Estudos Cross-Over , Inibidores de Ciclo-Oxigenase/administração & dosagem , Ingestão de Líquidos , Grelina/sangue , Humanos , Hidrocortisona/sangue , Ibuprofeno/administração & dosagem , Masculino , Ontário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA