Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Comput Biol ; 20(2): e1010980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329927

RESUMO

Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.


Assuntos
Esclerose Múltipla , Humanos , Estudos Prospectivos , Tomografia de Coerência Óptica/métodos , Retina , Encéfalo , Proteínas de Choque Térmico
2.
Mol Psychiatry ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875549

RESUMO

Decreased hippocampal connectivity and disruption of functional networks are established resting-state functional MRI (rs-fMRI) features that are associated with neuropsychiatric symptom severity in human anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. However, the underlying pathophysiology of NMDAR encephalitis remains poorly understood. Application of patient-derived monoclonal antibodies against the NR1 (GluN1) subunit of the NMDAR now allows for the translational investigation of functional connectivity in experimental murine NMDAR antibody disease models with neurodevelopmental disorders. Using rs-fMRI, we studied functional connectivity alterations in (1) adult C57BL/6 J mice that were intrathecally injected with a recombinant human NR1 antibody over 14 days (n = 10) and in (2) a newly established mouse model with in utero exposure to a human recombinant NR1 antibody (NR1-offspring) at the age of (2a) 8 weeks (n = 15) and (2b) 10 months (n = 14). Adult NR1-antibody injected mice showed impaired functional connectivity within the left hippocampus compared to controls, resembling impaired connectivity patterns observed in human NMDAR encephalitis patients. Similarly, NR1-offspring showed significantly reduced functional connectivity in the hippocampus after 8 weeks, and impaired connectivity in the hippocampus was likewise observed in NR1-offspring at the age of 10 months. We successfully reproduced functional connectivity changes within the hippocampus in different experimental murine systems that were previously observed in human NMDAR encephalitis patients. Translational application of this method within a combined imaging and histopathological framework will allow future experimental studies to identify the underlying biological mechanisms and may eventually facilitate non-invasive monitoring of disease activity and treatment responses in autoimmune encephalitis.

3.
Stroke ; 53(5): 1735-1745, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35105183

RESUMO

BACKGROUND: Connectome analysis of neuroimaging data is a rapidly expanding field that offers the potential to diagnose, characterize, and predict neurological disease. Animal models provide insight into biological mechanisms that underpin disease, but connectivity approaches are currently lagging in the rodent. METHODS: We present a pipeline adapted for structural and functional connectivity analysis of the mouse brain, and we tested it in a mouse model of vascular dementia. RESULTS: We observed lacunar infarctions, microbleeds, and progressive white matter change across 6 months. For the first time, we report that default mode network activity is disrupted in the mouse model. We also identified specific functional circuitry that was vulnerable to vascular stress, including perturbations in a sensorimotor, visual resting state network that were accompanied by deficits in visual and spatial memory tasks. CONCLUSIONS: These findings advance our understanding of the mouse connectome and provide insight into how it can be altered by vascular insufficiency.


Assuntos
Conectoma , Demência Vascular , Animais , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Demência Vascular/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Rede Nervosa
4.
Mult Scler ; 28(5): 757-767, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34379018

RESUMO

BACKGROUND: Decreased motion perception has been suggested as a marker for visual pathway demyelination in optic neuritis (ON) and/or multiple sclerosis (MS). OBJECTIVES: To examine the influence of neuro-axonal damage on motion perception in MS and neuromyelitis optica spectrum disorders (NMOSD). METHODS: We analysed motion perception with numbers-from-motion (NFM), visual acuity, (multifocal (mf)) VEP, optical coherence tomography in patients with MS (n = 38, confirmatory cohort n = 43), NMOSD (n = 13) and healthy controls (n = 33). RESULTS: NFM was lower compared with controls in MS (B = -12.37, p < 0.001) and NMOSD (B = -34.5, p < 0.001). NFM was lower in ON than in non-ON eyes (B = -30.95, p = 0.041) in NMOSD, but not MS. In MS and NMOSD, lower NFM was associated with worse visual acuity (B = -139.4, p < 0.001/B = -77.2, p < 0.001) and low contrast letter acuity (B = 0.99, p = 0.002/B = 1.6, p < 0.001), thinner peripapillary retinal nerve fibre layer (B = 1.0, p < 0.001/ B = 0.92, p = 0.016) and ganglion cell/inner plexiform layer (B = 64.8, p < 0.001/B = 79.5, p = 0.006), but not with VEP P100 latencies. In the confirmatory MS cohort, lower NFM was associated with thinner retinal nerve fibre layer (B = 1.351, p < 0.001) and increased mfVEP P100 latencies (B = -1.159, p < 0.001). CONCLUSIONS: Structural neuro-axonal visual pathway damage is an important driver of motion perception impairment in MS and NMOSD.


Assuntos
Percepção de Movimento , Esclerose Múltipla , Neuromielite Óptica , Neurite Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Vias Visuais/diagnóstico por imagem
5.
Klin Monbl Augenheilkd ; 239(11): 1315-1324, 2022 Nov.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-36410333

RESUMO

Aquaporin-4 antibody-seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD; also termed MOG encephalomyelitis) are autoimmune diseases of the central nervous system. The typical initial manifestations in adult patients are optic neuritis and myelitis. Patients often present with additional involvement of the brain and brainstem, more so in the later stages of the disease. While NMOSD commonly follows a relapsing course, MOGAD can sometimes be monophasic. Differential diagnosis is challenging and relies particularly on radiological and serological findings. It is very important to distinguish these rare diseases from the more common neuroinflammatory disease, multiple sclerosis (MS), since treatment and long-term prognoses for NMOSD, MOGAD and MS differ greatly. The diversity of the symptoms and the extent of the diagnostic work-up necessitate close collaboration between ophthalmology, neurology, and radiology. This article provides an overview of the typical MRI findings and serological antibody diagnostics for NMOSD and MOGAD, supplemented with two exemplary case reports from clinical practice.


Assuntos
Doenças Autoimunes , Esclerose Múltipla , Neuromielite Óptica , Neurite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Esclerose Múltipla/diagnóstico , Sistema Nervoso Central
6.
J Neuroinflammation ; 18(1): 105, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933106

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a frequently disabling neuroinflammatory syndrome with a relapsing course. Blood-based disease severity and prognostic biomarkers for NMOSD are a yet unmet clinical need. Here, we evaluated serum glial fibrillary acidic protein (sGFAP) and neurofilament light (sNfL) as disease severity and prognostic biomarkers in patients with aquaporin-4 immunoglobulin (Ig)G positive (AQP4-IgG+) NMOSD. METHODS: sGFAP and sNfL were determined by single-molecule array technology in a prospective cohort of 33 AQP4-IgG+ patients with NMOSD, 32 of which were in clinical remission at study baseline. Sixteen myelin oligodendrocyte glycoprotein IgG-positive (MOG-IgG+) patients and 38 healthy persons were included as controls. Attacks were recorded in all AQP4-IgG+ patients over a median observation period of 4.25 years. RESULTS: In patients with AQP4-IgG+ NMOSD, median sGFAP (109.2 pg/ml) was non-significantly higher than in MOG-IgG+ patients (81.1 pg/ml; p = 0.83) and healthy controls (67.7 pg/ml; p = 0.07); sNfL did not substantially differ between groups. Yet, in AQP4-IgG+, but not MOG-IgG+ patients, higher sGFAP was associated with worse clinical disability scores, including the Expanded Disability Status Scale (EDSS, standardized effect size = 1.30, p = 0.007) and Multiple Sclerosis Functional Composite (MSFC, standardized effect size = - 1.28, p = 0.01). While in AQP4-IgG+, but not MOG-IgG+ patients, baseline sGFAP and sNfL were positively associated (standardized effect size = 2.24, p = 0.001), higher sNfL was only non-significantly associated with worse EDSS (standardized effect size = 1.09, p = 0.15) and MSFC (standardized effect size = - 1.75, p = 0.06) in patients with AQP4-IgG+ NMOSD. Patients with AQP4-IgG+ NMOSD with sGFAP > 90 pg/ml at baseline had a shorter time to a future attack than those with sGFAP ≤ 90 pg/ml (adjusted hazard ratio [95% confidence interval] = 11.6 [1.3-105.6], p = 0.03). In contrast, baseline sNfL levels above the 75th age adjusted percentile were not associated with a shorter time to a future attack in patients with AQP4-IgG+ NMOSD. CONCLUSION: These findings suggest a potential role for sGFAP as biomarker for disease severity and future disease activity in patients with AQP4-IgG+ NMOSD in phases of clinical remission.


Assuntos
Biomarcadores/sangue , Proteína Glial Fibrilar Ácida/sangue , Proteínas de Neurofilamentos/sangue , Neuromielite Óptica/sangue , Adulto , Idoso , Autoanticorpos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença
7.
Magn Reson Med ; 86(3): 1383-1402, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33951214

RESUMO

PURPOSE: The characteristic MRI features of multiple sclerosis (MS) lesions make it conceptually appealing to pursue parametric mapping techniques that support simultaneous generation of quantitative maps of 2 or more MR contrast mechanisms. We present a modular rapid acquisition with relaxation enhancement (RARE)-EPI hybrid that facilitates simultaneous T2 and T2∗ mapping (2in1-RARE-EPI). METHODS: In 2in1-RARE-EPI the first echoes in the echo train are acquired with a RARE module, later echoes are acquired with an EPI module. To define the fraction of echoes covered by the RARE and EPI module, an error analysis of T2 and T2∗ was conducted with Monte Carlo simulations. Radial k-space (under)sampling was implemented for acceleration (R = 2). The feasibility of 2in1-RARE-EPI for simultaneous T2 and T2∗ mapping was examined in a phantom study mimicking T2 and T2∗ relaxation times of the brain. For validation, 2in1-RARE-EPI was benchmarked versus multi spin-echo (MSE) and multi gradient-echo (MGRE) techniques. The clinical applicability of 2in1-RARE-EPI was demonstrated in healthy subjects and MS patients. RESULTS: There was a good agreement between T2 / T2∗ values derived from 2in1-RARE-EPI and T2 / T2∗ reference values obtained from MSE and MGRE in both phantoms and healthy subjects. In patients, MS lesions in T2 and T2∗ maps deduced from 2in1-RARE-EPI could be just as clearly delineated as in reference maps calculated from MSE/MGRE. CONCLUSION: This work demonstrates the feasibility of radially (under)sampled 2in1-RARE-EPI for simultaneous T2 and T2∗ mapping in MS patients.


Assuntos
Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Imagens de Fantasmas , Valores de Referência
8.
Mult Scler ; 27(14): 2180-2190, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33856249

RESUMO

BACKGROUND: Cross-sectional studies suggest normal appearing white matter (NAWM) integrity loss may lead to cortical atrophy in late-stage relapsing-remitting multiple sclerosis (MS). OBJECTIVE: To investigate the relationship between NAWM integrity and cortical thickness from first clinical presentation longitudinally. METHODS: NAWM integrity and cortical thickness were assessed with 3T magnetic resonance imaging (MRI) in 102 patients with clinically isolated syndrome or early MS (33.2 (20.1-60.1) years old, 68% female) from first clinical presentation over 2.8 ± 1.6 years. Fifty healthy controls (HCs) matched for age and sex were included. NAWM integrity was evaluated using the standardized T1w/T2w ratio (sT1w/T2w). The association between sT1w/T2w and cortical thickness was assessed using linear mixed models. The effect of disease activity was investigated using the No Evidence of Disease Activity (NEDA-3) criteria. RESULTS: At baseline, sT1w/T2w (p = 0.152) and cortical thickness (p = 0.489) did not differ from HCs. Longitudinally, decreasing sT1w/T2w was associated with cortical thickness and increasing lesion burden (marginal R2 = 0.061). The association was modulated by failing NEDA-3 (marginal R2 = 0.097). CONCLUSION: sT1w/T2w may be a useful MRI biomarker for early MS, detecting relevant NAWM damage over time using conventional MRI scans, although with less sensitivity compared to quantitative measures.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Adulto , Encéfalo/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Adulto Jovem
9.
Eur J Neurol ; 28(7): 2280-2293, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33547839

RESUMO

BACKGROUND AND PURPOSE: Foveal changes were reported in aquaporin-4 antibody (AQP4-Ab) seropositive neuromyelitis optica spectrum disorder (NMOSD) patients; however, it is unclear whether they are independent of optic neuritis (ON), stem from subclinical ON or crossover from ON in fellow eyes. Fovea morphometry and a statistical classification approach were used to investigate if foveal changes in NMOSD are independent of ON and progressive. METHODS: This was a retrospective longitudinal study of 27 AQP4-IgG + NMOSD patients (49 eyes; 15 ON eyes and 34 eyes without a history of ON [NON eyes]), follow-up median (first and third quartile) 2.32 (1.33-3.28), and 38 healthy controls (HCs) (76 eyes), follow-up median (first and third quartile) 1.95 (1.83-2.54). The peripapillary retinal nerve fibre layer thickness and the volume of combined ganglion cell and inner plexiform layer as measures of neuroaxonal damage from ON were determined by optical coherence tomography. Nineteen foveal morphometry parameters were extracted from macular optical coherence tomography volume scans. Data were analysed using orthogonal partial least squares discriminant analysis and linear mixed effects models. RESULTS: At baseline, foveal shape was significantly altered in ON eyes and NON eyes compared to HCs. Discriminatory analysis showed 81% accuracy distinguishing ON vs. HCs and 68% accuracy in NON vs. HCs. NON eyes were distinguished from HCs by foveal shape parameters indicating widening. Orthogonal partial least squares discriminant analysis discriminated ON vs. NON with 76% accuracy. In a follow-up of 2.4 (20.85) years, no significant time-dependent foveal changes were found. CONCLUSION: The parafoveal area is altered in AQP4-Ab seropositive NMOSD patients suggesting independent neuroaxonal damage from subclinical ON. Longer follow-ups are needed to confirm the stability of the parafoveal structure over time.


Assuntos
Neuromielite Óptica , Neurite Óptica , Aquaporina 4 , Humanos , Estudos Longitudinais , Neuromielite Óptica/complicações , Neuromielite Óptica/diagnóstico por imagem , Estudos Retrospectivos , Tomografia de Coerência Óptica
10.
Eur Radiol ; 30(9): 5048-5058, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32335748

RESUMO

OBJECTIVES: We aimed to evaluate optic chiasm (OC) measures as potential imaging marker for anterior optic pathway damage assessment in the context of neuromyelitis optica spectrum disorders (NMOSD). MATERIALS AND METHOD: This cross-sectional study included 39 patients exclusively with aquaporin 4-IgG seropositive NMOSD of which 25 patients had a history of optic neuritis (NMOSD-ON) and 37 age- and sex-matched healthy controls (HC). OC heights, width, and area were measured using standard 3D T1-weighted MRI. Sensitivity of these measures to detect neurodegeneration in the anterior optic pathway was assessed in receiver operating characteristics analyses. Correlation coefficients were used to assess associations with structural measures of the anterior optic pathway (optic nerve dimensions, retinal ganglion cell loss) and clinical measures (visual function and disease duration). RESULTS: OC heights and area were significantly smaller in NMOSD-ON compared to HC (NMOSD-ON vs. HC p < 0.0001). An OC area smaller than 22.5 mm2 yielded a sensitivity of 0.92 and a specificity of 0.92 in separating chiasms of NMOSD-ON from HC. OC area correlated well with structural and clinical measures in NMOSD-ON: optic nerve diameter (r = 0.4, p = 0.047), peripapillary retinal nerve fiber layer thickness (r = 0.59, p = 0.003), global visual acuity (r = - 0.57, p = 0.013), and diseases duration (r = - 0.5, p = 0.012). CONCLUSION: Our results suggest that OC measures are promising and easily accessible imaging markers for the assessment of anterior optic pathway damage. KEY POINTS: • Optic chiasm dimensions were smaller in neuromyelitis optica spectrum disorder patients compared to healthy controls. • Optic chiasm dimensions are associated with retinal measures and visual dysfunction. • The optic chiasm might be used as an easily accessible imaging marker of neurodegeneration in the anterior optic pathway with potential functional relevance.


Assuntos
Neuromielite Óptica/diagnóstico por imagem , Quiasma Óptico/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem , Retina/diagnóstico por imagem , Adulto , Idoso , Aquaporina 4 , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/fisiopatologia , Quiasma Óptico/patologia , Neurite Óptica , Tamanho do Órgão , Retina/patologia , Células Ganglionares da Retina/patologia , Acuidade Visual , Vias Visuais/diagnóstico por imagem , Vias Visuais/patologia
11.
J Neurol Neurosurg Psychiatry ; 90(10): 1156-1164, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31127016

RESUMO

OBJECTIVES: In neuromyelitis optica spectrum disorders (NMOSD) thalamic damage is controversial, but thalamic nuclei were never studied separately. We aimed at assessing volume loss of thalamic nuclei in NMOSD. We hypothesised that only specific nuclei are damaged, by attacks affecting structures from which they receive afferences: the lateral geniculate nucleus (LGN), due to optic neuritis (ON) and the ventral posterior nucleus (VPN), due to myelitis. METHODS: Thirty-nine patients with aquaporin 4-IgG seropositive NMOSD (age: 50.1±14.1 years, 36 women, 25 with prior ON, 36 with prior myelitis) and 37 healthy controls (age: 47.8 ± 12.5 years, 32 women) were included in this cross-sectional study. Thalamic nuclei were assessed in magnetic resonance images, using a multi-atlas-based approach of automated segmentation. Retinal optical coherence tomography was also performed. RESULTS: Patients with ON showed smaller LGN volumes (181.6±44.2 mm3) compared with controls (198.3±49.4 mm3; B=-16.97, p=0.004) and to patients without ON (206.1±50 mm3 ; B=-23.74, p=0.001). LGN volume was associated with number of ON episodes (Rho=-0.536, p<0.001), peripapillary retinal nerve fibre layer thickness (B=0.70, p<0.001) and visual function (B=-0.01, p=0.002). Although VPN was not smaller in patients with myelitis (674.3±67.5 mm3) than controls (679.7±68.33; B=-7.36, p=0.594), we found reduced volumes in five patients with combined myelitis and brainstem attacks (B=-76.18, p=0.017). Volumes of entire thalamus and other nuclei were not smaller in patients than controls. CONCLUSION: These findings suggest attack-related anterograde degeneration rather than diffuse thalamic damage in NMOSD. They also support a potential role of LGN volume as an imaging marker of structural brain damage in these patients.


Assuntos
Corpos Geniculados/diagnóstico por imagem , Neuromielite Óptica/diagnóstico por imagem , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Adulto , Atrofia , Estudos de Casos e Controles , Feminino , Corpos Geniculados/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mielite Transversa/diagnóstico por imagem , Mielite Transversa/patologia , Neuromielite Óptica/patologia , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/patologia , Tamanho do Órgão , Estudos Prospectivos , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia , Núcleos Ventrais do Tálamo/patologia
12.
Mult Scler ; 23(14): 1847-1853, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27811337

RESUMO

BACKGROUND: Many studies in multiple sclerosis (MS) have investigated the retina. Little, however, is known about the effect of MS on the cornea, which is innervated by the trigeminal nerve. It is the site of neural-immune interaction with local dendritic cells reacting in response to environmental stimuli. OBJECTIVE: This study aims to investigate the effect of MS on corneal nerve fibres and dendritic cells in the subbasal nerve plexus using in vivo confocal microscopy (IVCM). METHODS: We measured the corneal nerve fibre and dendritic cell density in 26 MS patients and matched healthy controls using a Heidelberg Retina Tomograph with cornea module. Disease severity was assessed with the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale, visual acuity and retinal optical coherence tomography. RESULTS: We observed significant reduction in total corneal nerve fibre density in MS patients compared to controls. Dendritic cell density was similar in both groups. Reduced total nerve fibre density was associated with worse clinical severity but not with previous clinical trigeminal symptoms, retinal neuro-axonal damage, visual acuity or disease duration. CONCLUSION: Corneal nerve fibre density is a promising new imaging marker for the assessment of disease severity in MS and should be investigated further.


Assuntos
Córnea/diagnóstico por imagem , Córnea/inervação , Dendritos/ultraestrutura , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Fibras Nervosas/ultraestrutura , Nervo Trigêmeo/diagnóstico por imagem , Adulto , Biomarcadores , Contagem de Células , Feminino , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
13.
J Neuroinflammation ; 13(1): 279, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27788675

RESUMO

BACKGROUND: Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) have been suggested to play a role in a subset of patients with neuromyelitis optica and related disorders. OBJECTIVE: To assess (i) the frequency of MOG-IgG in a large and predominantly Caucasian cohort of patients with optic neuritis (ON) and/or myelitis; (ii) the frequency of MOG-IgG among AQP4-IgG-positive patients and vice versa; (iii) the origin and frequency of MOG-IgG in the cerebrospinal fluid (CSF); (iv) the presence of MOG-IgG at disease onset; and (v) the influence of disease activity and treatment status on MOG-IgG titers. METHODS: 614 serum samples from patients with ON and/or myelitis and from controls, including 92 follow-up samples from 55 subjects, and 18 CSF samples were tested for MOG-IgG using a live cell-based assay (CBA) employing full-length human MOG-transfected HEK293A cells. RESULTS: MOG-IgG was detected in 95 sera from 50 patients with ON and/or myelitis, including 22/54 (40.7 %) patients with a history of both ON and myelitis, 22/103 (21.4 %) with a history of ON but no myelitis and 6/45 (13.3 %) with a history of longitudinally extensive transverse myelitis but no ON, and in 1 control patient with encephalitis and a connective tissue disorder, all of whom were negative for AQP4-IgG. MOG-IgG was absent in 221 further controls, including 83 patients with AQP4-IgG-seropositive neuromyelitis optica spectrum disorders and 85 with multiple sclerosis (MS). MOG-IgG was found in 12/18 (67 %) CSF samples from MOG-IgG-seropositive patients; the MOG-IgG-specific antibody index was negative in all cases, indicating a predominantly peripheral origin of CSF MOG-IgG. Serum and CSF MOG-IgG belonged to the complement-activating IgG1 subclass. MOG-IgG was present already at disease onset. The antibodies remained detectable in 40/45 (89 %) follow-up samples obtained over a median period of 16.5 months (range 0-123). Serum titers were higher during attacks than during remission (p < 0.0001), highest during attacks of simultaneous myelitis and ON, lowest during acute isolated ON, and declined following treatment. CONCLUSIONS: To date, this is the largest cohort studied for IgG to human full-length MOG by means of an up-to-date CBA. MOG-IgG is present in a substantial subset of patients with ON and/or myelitis, but not in classical MS. Co-existence of MOG-IgG and AQP4-IgG is highly uncommon. CSF MOG-IgG is of extrathecal origin. Serum MOG-IgG is present already at disease onset and remains detectable in the long-term course. Serum titers depend on disease activity and treatment status.


Assuntos
Aquaporina 4/imunologia , Autoanticorpos/sangue , Glicoproteína Mielina-Oligodendrócito/imunologia , Mielite/imunologia , Neuromielite Óptica/sangue , Neuromielite Óptica/imunologia , Adulto , Aquaporina 4/genética , Autoanticorpos/líquido cefalorraquidiano , Feminino , Células HEK293 , Humanos , Masculino , Glicoproteína Mielina-Oligodendrócito/genética , Neuromielite Óptica/líquido cefalorraquidiano , Neuromielite Óptica/fisiopatologia , Índice de Gravidade de Doença , Transfecção
14.
J Neuroinflammation ; 13(1): 280, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27793206

RESUMO

BACKGROUND: A subset of patients with neuromyelitis optica spectrum disorders (NMOSD) has been shown to be seropositive for myelin oligodendrocyte glycoprotein antibodies (MOG-IgG). OBJECTIVE: To describe the epidemiological, clinical, radiological, cerebrospinal fluid (CSF), and electrophysiological features of a large cohort of MOG-IgG-positive patients with optic neuritis (ON) and/or myelitis (n = 50) as well as attack and long-term treatment outcomes. METHODS: Retrospective multicenter study. RESULTS: The sex ratio was 1:2.8 (m:f). Median age at onset was 31 years (range 6-70). The disease followed a multiphasic course in 80 % (median time-to-first-relapse 5 months; annualized relapse rate 0.92) and resulted in significant disability in 40 % (mean follow-up 75 ± 46.5 months), with severe visual impairment or functional blindness (36 %) and markedly impaired ambulation due to paresis or ataxia (25 %) as the most common long-term sequelae. Functional blindess in one or both eyes was noted during at least one ON attack in around 70 %. Perioptic enhancement was present in several patients. Besides acute tetra-/paraparesis, dysesthesia and pain were common in acute myelitis (70 %). Longitudinally extensive spinal cord lesions were frequent, but short lesions occurred at least once in 44 %. Fourty-one percent had a history of simultaneous ON and myelitis. Clinical or radiological involvement of the brain, brainstem, or cerebellum was present in 50 %; extra-opticospinal symptoms included intractable nausea and vomiting and respiratory insufficiency (fatal in one). CSF pleocytosis (partly neutrophilic) was present in 70 %, oligoclonal bands in only 13 %, and blood-CSF-barrier dysfunction in 32 %. Intravenous methylprednisolone (IVMP) and long-term immunosuppression were often effective; however, treatment failure leading to rapid accumulation of disability was noted in many patients as well as flare-ups after steroid withdrawal. Full recovery was achieved by plasma exchange in some cases, including after IVMP failure. Breakthrough attacks under azathioprine were linked to the drug-specific latency period and a lack of cotreatment with oral steroids. Methotrexate was effective in 5/6 patients. Interferon-beta was associated with ongoing or increasing disease activity. Rituximab and ofatumumab were effective in some patients. However, treatment with rituximab was followed by early relapses in several cases; end-of-dose relapses occurred 9-12 months after the first infusion. Coexisting autoimmunity was rare (9 %). Wingerchuk's 2006 and 2015 criteria for NMO(SD) and Barkhof and McDonald criteria for multiple sclerosis (MS) were met by 28 %, 32 %, 15 %, 33 %, respectively; MS had been suspected in 36 %. Disease onset or relapses were preceded by infection, vaccination, or pregnancy/delivery in several cases. CONCLUSION: Our findings from a predominantly Caucasian cohort strongly argue against the concept of MOG-IgG denoting a mild and usually monophasic variant of NMOSD. The predominantly relapsing and often severe disease course and the short median time to second attack support the use of prophylactic long-term treatments in patients with MOG-IgG-positive ON and/or myelitis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Autoanticorpos/líquido cefalorraquidiano , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica , Resultado do Tratamento , Adolescente , Adulto , Distribuição por Idade , Idoso , Aquaporina 4/imunologia , Encéfalo/diagnóstico por imagem , Cardiolipinas/imunologia , Criança , Estudos de Coortes , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Glicoproteína Mielina-Oligodendrócito/genética , Neuromielite Óptica/líquido cefalorraquidiano , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/epidemiologia , Neuromielite Óptica/terapia , Nervo Óptico/diagnóstico por imagem , Fatores Sexuais , Vacinação/métodos , Transtornos da Visão/etiologia , Adulto Jovem
15.
Mult Scler ; 20(14): 1866-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24781284

RESUMO

Potential differences between primary progressive (PP) and relapsing-remitting (RR) multiple sclerosis (MS) have been controversially discussed. In this study, we compared lesion morphology and distribution in patients with PPMS and RRMS (nine in each group) using 7 T MRI. We found that gray and white matter lesions in PPMS and RRMS patients did not differ in their respective morphological characteristics (e.g., perivascular p = 0.863, hypointense rim p = 0.796, cortical lesion count p = 0.436). Although limited by a small sample size, our study results suggest that PPMS and RRMS, despite differences in disease course and clinical characteristics, exhibit identical lesion morphology under ultrahigh field MRI.


Assuntos
Córtex Cerebral/patologia , Substância Cinzenta/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/patologia , Adulto , Encéfalo/patologia , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
16.
Ann Clin Transl Neurol ; 11(1): 45-56, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903651

RESUMO

OBJECTIVE: Retrograde trans-synaptic neuroaxonal degeneration is considered a key pathological factor of subclinical retinal neuroaxonal damage in multiple sclerosis (MS). We aim to evaluate the longitudinal association of optic radiation (OR) lesion activity with retinal neuroaxonal damage and its role in correlations between retinal and brain atrophy in people with clinically isolated syndrome and early MS (pweMS). METHODS: Eighty-five pweMS were retrospectively screened from a prospective cohort (Berlin CIS cohort). Participants underwent 3T magnetic resonance imaging (MRI) for OR lesion volume and brain atrophy measurements and optical coherence tomography (OCT) for retinal layer thickness measurements. All pweMS were followed with serial OCT and MRI over a median follow-up of 2.9 (interquartile range: 2.6-3.4) years. Eyes with a history of optic neuritis prior to study enrollment were excluded. Linear mixed models were used to analyze the association of retinal layer thinning with changes in OR lesion volume and brain atrophy. RESULTS: Macular ganglion cell-inner plexiform layer (GCIPL) thinning was more pronounced in pweMS with OR lesion volume increase during follow-up compared to those without (Difference: -0.82 µm [95% CI:-1.49 to -0.15], p = 0.018). Furthermore, GCIPL thinning correlated with both OR lesion volume increase (ß [95% CI] = -0.27 [-0.50 to -0.03], p = 0.028) and brain atrophy (ß [95% CI] = 0.47 [0.25 to 0.70], p < 0.001). Correlations of GCIPL changes with brain atrophy did not differ between pweMS with or without OR lesion increase ( η p 2 = 5.92e-7 , p = 0.762). INTERPRETATION: Faster GCIPL thinning rate is associated with increased OR lesion load. Our results support the value of GCIPL as a sensitive biomarker reflecting both posterior visual pathway pathology and global brain neurodegeneration.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Células Ganglionares da Retina/patologia , Estudos Prospectivos , Estudos Retrospectivos , Doenças do Sistema Nervoso Central/complicações , Atrofia/patologia
17.
J Neurol ; 271(3): 1133-1149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133801

RESUMO

BACKGROUND: Multiple sclerosis patients would benefit from machine learning algorithms that integrates clinical, imaging and multimodal biomarkers to define the risk of disease activity. METHODS: We have analysed a prospective multi-centric cohort of 322 MS patients and 98 healthy controls from four MS centres, collecting disability scales at baseline and 2 years later. Imaging data included brain MRI and optical coherence tomography, and omics included genotyping, cytomics and phosphoproteomic data from peripheral blood mononuclear cells. Predictors of clinical outcomes were searched using Random Forest algorithms. Assessment of the algorithm performance was conducted in an independent prospective cohort of 271 MS patients from a single centre. RESULTS: We found algorithms for predicting confirmed disability accumulation for the different scales, no evidence of disease activity (NEDA), onset of immunotherapy and the escalation from low- to high-efficacy therapy with intermediate to high-accuracy. This accuracy was achieved for most of the predictors using clinical data alone or in combination with imaging data. Still, in some cases, the addition of omics data slightly increased algorithm performance. Accuracies were comparable in both cohorts. CONCLUSION: Combining clinical, imaging and omics data with machine learning helps identify MS patients at risk of disability worsening.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/terapia , Estudos Prospectivos , Leucócitos Mononucleares , Imageamento por Ressonância Magnética/métodos , Gravidade do Paciente , Aprendizado de Máquina
18.
Tomography ; 9(1): 299-314, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36828376

RESUMO

(1) Background: Radial RARE-EPI MRI facilitates simultaneous T2 and T2* mapping (2in1-RARE-EPI). With modest undersampling (R = 2), the speed gain of 2in1-RARE-EPI relative to Multi-Spin-Echo and Multi-Gradient-Recalled-Echo references is limited. Further reduction in scan time is crucial for clinical studies investigating T2 and T2* as imaging biomarkers. We demonstrate the feasibility of further acceleration, utilizing compressed sensing (CS) reconstruction of highly undersampled 2in1-RARE-EPI. (2) Methods: Two-fold radially-undersampled 2in1-RARE-EPI data from phantoms, healthy volunteers (n = 3), and multiple sclerosis patients (n = 4) were used as references, and undersampled (Rextra = 1-12, effective undersampling Reff = 2-24). For each echo time, images were reconstructed using CS-reconstruction. For T2 (RARE module) and T2* mapping (EPI module), a linear least-square fit was applied to the images. T2 and T2* from CS-reconstruction of undersampled data were benchmarked against values from CS-reconstruction of the reference data. (3) Results: We demonstrate accelerated simultaneous T2 and T2* mapping using undersampled 2in1-RARE-EPI with CS-reconstruction is feasible. For Rextra = 6 (TA = 01:39 min), the overall MAPE was ≤8% (T2*) and ≤4% (T2); for Rextra = 12 (TA = 01:06 min), the overall MAPE was <13% (T2*) and <5% (T2). (4) Conclusion: Substantial reductions in scan time are achievable for simultaneous T2 and T2* mapping of the brain using highly undersampled 2in1-RARE-EPI with CS-reconstruction.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo , Imagens de Fantasmas
19.
Mult Scler J Exp Transl Clin ; 9(3): 20552173231195879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641618

RESUMO

Background: Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions. Objective: This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals. Methods: We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity. Results: Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances. Conclusion: Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals.

20.
Brain Commun ; 4(3): fcac152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770132

RESUMO

Depression is among the most common comorbidities in multiple sclerosis and has severe psychosocial consequences. Alterations in neural emotion regulation in amygdala and prefrontal cortex have been recognized as key mechanism of depression but never been investigated in multiple sclerosis depression. In this cross-sectional observational study, we employed a functional MRI task investigating neural emotion regulation by contrasting regulated versus unregulated negative stimulus perception in 16 persons with multiple sclerosis and depression (47.9 ± 11.8 years; 14 female) and 26 persons with multiple sclerosis but without depression (47.3 ± 11.7 years; 14 female). We tested the impact of depression and its interaction with lesions in amygdala-prefrontal fibre tracts on brain activity reflecting emotion regulation. A potential impact of sex, age, information processing speed, disease duration, overall lesion load, grey matter fraction, and treatment was taken into account in these analyses. Patients with depression were less able (i) to downregulate negative emotions than those without (t = -2.25, P = 0.012, ß = -0.33) on a behavioural level according to self-report data and (ii) to downregulate activity in a left amygdala coordinate (t = 3.03, P Family-wise error [FWE]-corrected = 0.017, ß = 0.39). Moreover, (iii) an interdependent effect of depression and lesions in amygdala-prefrontal tracts on activity was found in two left amygdala coordinates (t = 3.53, pFWE = 0.007, ß = 0.48; t = 3.21, pFWE = 0.0158, ß = 0.49) and one right amygdala coordinate (t = 3.41, pFWE = 0.009, ß = 0.51). Compatible with key elements of the cognitive depression theory formulated for idiopathic depression, our study demonstrates that depression in multiple sclerosis is characterized by impaired neurobehavioural emotion regulation. Complementing these findings, it shows that the relation between neural emotion regulation and depression is affected by lesion load, a key pathological feature of multiple sclerosis, located in amygdala-prefrontal tracts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA