Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Toxicol ; 33(6): 506-17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25297719

RESUMO

Exposure to cigarette smoke (CS) is linked to the development of respiratory diseases, and there is a need to understand the mechanisms whereby CS causes damage. Although animal models have provided valuable insights into smoking-related respiratory tract damage, modern toxicity testing calls for reliable in vitro models as alternatives for animal experimentation. We report on a repeated whole mainstream CS exposure of nasal and bronchial organotypic tissue cultures that mimic the morphological, physiological, and molecular attributes of the human respiratory tract. Despite the similar cellular staining and cytokine secretion in both tissue types, the transcriptomic analyses in the context of biological network models identified similar and diverse biological processes that were impacted by CS-exposed nasal and bronchial cultures. Our results demonstrate that nasal and bronchial tissue cultures are appropriate in vitro models for the assessment of CS-induced adverse effects in the respiratory system and promising alternative to animal experimentation.


Assuntos
Brônquios/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Técnicas de Cultura de Tecidos , Idoso , Alternativas aos Testes com Animais , Brônquios/metabolismo , Citocinas/metabolismo , Células Epiteliais , Feminino , Fibroblastos , Perfilação da Expressão Gênica , Humanos , Masculino , Mucosa Nasal/metabolismo
2.
Toxicol Mech Methods ; 24(7): 470-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046638

RESUMO

Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air-liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products.


Assuntos
Mucosa Bucal/efeitos dos fármacos , Fumaça , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Técnicas In Vitro , Mucosa Bucal/metabolismo , Nicotiana , Transcriptoma
3.
Mol Cancer ; 10: 147, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22168338

RESUMO

BACKGROUND: Proteolytic enzymes have been implicated in driving tumor progression by means of their cancer cell microenvironment activity where they promote proliferation, differentiation, apoptosis, migration, and invasion. Therapeutic strategies have focused on attenuating their activity using small molecule inhibitors, but the association of proteases with the cell surface during cancer progression opens up the possibility of targeting these using antibody dependent cellular cytotoxicity (ADCC). Cathepsin S is a lysosomal cysteine protease that promotes the growth and invasion of tumour and endothelial cells during cancer progression. Our analysis of colorectal cancer patient biopsies shows that cathepsin S associates with the cell membrane indicating a potential for ADCC targeting. RESULTS: Here we report the cell surface characterization of cathepsin S and the development of a humanized antibody (Fsn0503h) with immune effector function and a stable in vivo half-life of 274 hours. Cathepsin S is expressed on the surface of tumor cells representative of colorectal and pancreatic cancer (23%-79% positive expression). Furthermore the binding of Fsn0503h to surface associated cathepsin S results in natural killer (NK) cell targeted tumor killing. In a colorectal cancer model Fsn0503h elicits a 22% cytotoxic effect. CONCLUSIONS: This data highlights the potential to target cell surface associated enzymes, such as cathepsin S, as therapeutic targets using antibodies capable of elicitingADCC in tumor cells.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Catepsinas/imunologia , Citotoxicidade Imunológica , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Catepsinas/química , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Feminino , Citometria de Fluxo , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Masculino , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Ratos , Ratos Sprague-Dawley
4.
Sci Rep ; 7: 41845, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165502

RESUMO

Genetic models for polyploid crop adaptation provide important information relevant for future breeding prospects. A well-suited model is Brassica napus, a recent allopolyploid closely related to Arabidopsis thaliana. Flowering time is a major adaptation trait determining life cycle synchronization with the environment. Here we unravel natural genetic variation in B. napus flowering time regulators and investigate associations with evolutionary diversification into different life cycle morphotypes. Deep sequencing of 35 flowering regulators was performed in 280 diverse B. napus genotypes. High sequencing depth enabled high-quality calling of single-nucleotide polymorphisms (SNPs), insertion-deletions (InDels) and copy number variants (CNVs). By combining these data with genotyping data from the Brassica 60 K Illumina® Infinium SNP array, we performed a genome-wide marker distribution analysis across the 4 ecogeographical morphotypes. Twelve haplotypes, including Bna.FLC.A10, Bna.VIN3.A02 and the Bna.FT promoter on C02_random, were diagnostic for the diversification of winter and spring types. The subspecies split between oilseed/kale (B. napus ssp. napus) and swedes/rutabagas (B. napus ssp. napobrassica) was defined by 13 haplotypes, including genomic rearrangements encompassing copies of Bna.FLC, Bna.PHYA and Bna.GA3ox1. De novo variation in copies of important flowering-time genes in B. napus arose during allopolyploidisation, enabling sub-functionalisation that allowed different morphotypes to appropriately fine-tune their lifecycle.


Assuntos
Brassica napus/genética , Variações do Número de Cópias de DNA , Poliploidia , Brassica napus/crescimento & desenvolvimento , Ecossistema , Evolução Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Genótipo , Haplótipos , Mutação INDEL , Fenótipo , Estações do Ano
5.
Front Plant Sci ; 8: 1742, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089948

RESUMO

Flowering time genes have a strong influence on successful reproduction and life cycle adaptation. However, their regulation is highly complex and only well understood in diploid model systems. For crops with a polyploid background from the genus Brassica, data on flowering time gene variation are scarce, although indispensable for modern breeding techniques like marker-assisted breeding. We have deep-sequenced all paralogs of 35 Arabidopsis thaliana flowering regulators using Sequence Capture followed by Illumina sequencing in two selected accessions of the vegetable species Brassica rapa and Brassica oleracea, respectively. Using these data, we were able to call SNPs, InDels and copy number variations (CNVs) for genes from the total flowering time network including central flowering regulators, but also genes from the vernalisation pathway, the photoperiod pathway, temperature regulation, the circadian clock and the downstream effectors. Comparing the results to a complementary data set from the allotetraploid species Brassica napus, we detected rearrangements in B. napus which probably occurred early after the allopolyploidisation event. Those data are both a valuable resource for flowering time research in those vegetable species, as well as a contribution to speciation genetics.

6.
Sci Data ; 4: 170013, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28291231

RESUMO

Gene copy number variation (CNV) is increasingly implicated in control of complex trait networks, particularly in polyploid plants like rapeseed (Brassica napus L.) with an evolutionary history of genome restructuring. Here we performed sequence capture to assay nucleotide variation and CNV in a panel of central flowering time regulatory genes across a species-wide diversity set of 280 B. napus accessions. The genes were chosen based on prior knowledge from Arabidopsis thaliana and related Brassica species. Target enrichment was performed using the Agilent SureSelect technology, followed by Illumina sequencing. A bait (probe) pool was developed based on results of a preliminary experiment with representatives from different B. napus morphotypes. A very high mean target coverage of ~670x allowed reliable calling of CNV, single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel) polymorphisms. No accession exhibited no CNV, and at least one homolog of every gene we investigated showed CNV in some accessions. Some CNV appear more often in specific morphotypes, indicating a role in diversification.


Assuntos
Brassica napus/genética , Genoma de Planta , Arabidopsis/genética , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
ALTEX ; 34(1): 23-48, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27388676

RESUMO

In vitro toxicology approaches have evolved from a focus on molecular changes within a cell to understanding of toxicity-related mechanisms in systems that can mimic the in vivo environment. The recent development of three dimensional (3-D) organotypic nasal epithelial culture models offers a physiologically robust system for studying the effects of exposure through inhalation. Exposure to cigarette smoke (CS) is associated with nasal inflammation; thus, the nasal epithelium is relevant for evaluating the pathophysiological impact of CS exposure. The present study investigated further the application of in vitro human 3-D nasal epithelial culture models for toxicological assessment of inhalation exposure. Aligned with 3Rs strategy, this study aimed to explore the relevance of a human 3-D nasal culture model to assess the toxicological impact of aerosols generated from a candidate modified risk tobacco product (cMRTP), the Tobacco Heating System (THS) 2.2, as compared with smoke generated from reference cigarette 3R4F. A series of experimental repetitions, where multiple concentrations of THS2.2 aerosol and 3R4F smoke were applied, were conducted to obtain reproducible measurements to understand the cellular/molecular changes that occur following exposure. In agreement with "Toxicity Testing in the 21st Century - a Vision and a Strategy", this study implemented a systems toxicology approach and found that for all tested concentrations the impact of 3R4F smoke was substantially greater than that of THS2.2 aerosol in terms of cytotoxicity levels, alterations in tissue morphology, secretion of pro-inflammatory mediators, impaired ciliary function, and increased perturbed transcriptomes and miRNA expression profiles.


Assuntos
Exposição por Inalação , Mucosa Nasal/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça/análise , Produtos do Tabaco , Aerossóis , Alternativas ao Uso de Animais , Adesão Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Modelos Biológicos , Mucosa Nasal/metabolismo , Fumaça/efeitos adversos , Nicotiana/química
8.
Toxicol Sci ; 147(1): 207-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085348

RESUMO

Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model.


Assuntos
Brônquios/patologia , Células Epiteliais/patologia , Fibroblastos/patologia , Nicotiana/toxicidade , Mucosa Respiratória/patologia , Fumaça/efeitos adversos , Produtos do Tabaco , Adenilato Quinase/metabolismo , Técnicas de Cocultura , Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas de Cultura de Tecidos
9.
J Vis Exp ; (96)2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25741927

RESUMO

Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers.


Assuntos
Brônquios/patologia , Pulmão/patologia , Mucosa Nasal/patologia , Fumaça/efeitos adversos , Fumar/efeitos adversos , Técnicas de Cultura de Tecidos/métodos , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/metabolismo , Células Epiteliais/patologia , Humanos , Doença Pulmonar Obstrutiva Crônica/etiologia
10.
Chem Cent J ; 8(1): 62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25411580

RESUMO

BACKGROUND: Only a few exposure systems are presently available that enable cigarette smoke exposure of living cells at the air-liquid interface, of which one of the most versatile is the Vitrocell® system (Vitrocell® Systems GmbH). To assess its performance and optimize the exposure conditions, we characterized a Vitrocell® 24/48 system connected to a 30-port carousel smoking machine. The Vitrocell® 24/48 system allows for simultaneous exposure of 48 cell culture inserts using dilution airflow rates of 0-3.0 L/min and exposes six inserts per dilution. These flow rates represent cigarette smoke concentrations of 7-100%. RESULTS: By characterizing the exposure inside the Vitrocell® 24/48, we verified that (I) the cigarette smoke aerosol distribution is uniform across all inserts, (II) the utility of Vitrocell® crystal quartz microbalances for determining the online deposition of particle mass on the inserts, and (III) the amount of particles deposited per surface area and the amounts of trapped carbonyls and nicotine were concentration dependent. At a fixed dilution airflow of 0.5 L/min, the results showed a coefficient of variation of 12.2% between inserts of the Vitrocell® 24/48 module, excluding variations caused by different runs. Although nicotine and carbonyl concentrations were linear over the tested dilution range, particle mass deposition increased nonlinearly. The observed effect on cell viability was well-correlated with increasing concentration of cigarette smoke. CONCLUSIONS: Overall, the obtained results highlight the suitability of the Vitrocell® 24/48 system to assess the effect of cigarette smoke on cells under air-liquid interface exposure conditions, which is closely related to the conditions occurring in human airways.

11.
Biochimie ; 94(2): 487-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21896304

RESUMO

Cathepsin S is a lysosomal cysteine protease implicated in tumourigenesis with key roles in invasion and angiogenesis. We have previously shown that the specific inhibition of Cathepsin S using a monoclonal antibody (Fsn0503) blocks colorectal carcinoma tumour growth and angiogenesis in vivo. We investigated whether Cathepsin S expression levels were affected by chemotherapy in human cancer cell lines by RT-PCR. Using colorectal xenograft models, we examined the therapeutic benefit of Cathepsin S inhibition using Fsn0503 in combination with a metronomic dosing regimen of CPT-11. We analysed the effects of the combination therapy on tumour progression and on tumour vascularisation by immunohistochemical staining of tumours. Cathepsin S expression levels are upregulated in HCT116, LoVo, Colo205 cell lines and HUVECs after exposure to CPT-11 in vitro. The administration of Fsn0503 in combination with CPT-11 significantly attenuated tumour growth in comparison to CPT-11 alone in colorectal HCT116 xenograft models. Furthermore, analysis of tumour vascularisation revealed that this was also significantly disrupted by the combination treatment. These results show that the combination of Cathepsin S inhibition with CPT-11 enhances the therapeutic effect of the chemotherapy. This rationale may have clinical application in the treatment of colorectal cancer upon further evaluation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Catepsinas/antagonistas & inibidores , Colo/irrigação sanguínea , Neoplasias Colorretais/tratamento farmacológico , Animais , Anticorpos Monoclonais/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Catepsinas/genética , Catepsinas/metabolismo , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Inibidores de Cisteína Proteinase/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Humanos , Irinotecano , Camundongos , Camundongos Nus , Neovascularização Patológica , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
12.
ChemMedChem ; 6(11): 2070-80, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21953839

RESUMO

AG-045572 (CMPD1, 1 a) is a nonpeptidic gonadotropin-releasing hormone (GnRH) antagonist that has been investigated for the treatment of sex hormone-related diseases. In the context of systematic studies on sila-substituted drugs, the silicon analogue disila-AG-045572 (1 b) and its derivative 2 were prepared in multi-step syntheses and characterized by elemental analyses (C, H, N), NMR spectroscopic studies (1H, 13C, 29Si), and single-crystal X-ray diffraction. The pharmacological properties of compounds 1 a, 1 b, and 2 were compared in terms of their in vitro potency at cloned human and rat GnRH receptors. Compounds 1 a and 2 were also examined in regard to their pharmacokinetics and in vivo efficacy in both castrated rat (luteinizing hormone (LH) suppression) and intact rat (testosterone suppression) models. The efficacy and pharmacokinetic profiles of 1 a and its silicon-containing analogue 2 appear similar, indicating that replacement of the 5,6,7,8-tetrahydronaphthalene ring system by the 1,3-disilaindane skeleton led to retention of efficacy. Therefore, the silicon compound 2 represents a novel drug prototype for the design of potent, orally available GnRH antagonists suitable for once-daily dosing.


Assuntos
Furanos/química , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacologia , Tetra-Hidronaftalenos/química , Animais , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Furanos/farmacologia , Antagonistas de Hormônios/farmacocinética , Humanos , Hormônio Luteinizante/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Molecular , Orquiectomia , Ratos Wistar , Receptores LHRH/genética , Silício/química , Relação Estrutura-Atividade , Tetra-Hidronaftalenos/farmacologia
13.
PLoS One ; 5(9)2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20824056

RESUMO

BACKGROUND: Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development. METHODOLOGY/PRINCIPAL FINDINGS: Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed. CONCLUSIONS/SIGNIFICANCE: Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Anticorpos/administração & dosagem , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Regulação para Baixo , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/imunologia , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos/farmacologia , Catepsinas/imunologia , Linhagem Celular , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA