Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1082-D1088, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953330

RESUMO

The UCSC Genome Browser (https://genome.ucsc.edu) is a web-based genomic visualization and analysis tool that serves data to over 7,000 distinct users per day worldwide. It provides annotation data on thousands of genome assemblies, ranging from human to SARS-CoV2. This year, we have introduced new data from the Human Pangenome Reference Consortium and on viral genomes including SARS-CoV2. We have added 1,200 new genomes to our GenArk genome system, increasing the overall diversity of our genomic representation. We have added support for nine new user-contributed track hubs to our public hub system. Additionally, we have released 29 new tracks on the human genome and 11 new tracks on the mouse genome. Collectively, these new features expand both the breadth and depth of the genomic knowledge that we share publicly with users worldwide.


Assuntos
Bases de Dados Genéticas , Genômica , RNA Viral , Animais , Humanos , Camundongos , Genoma Humano , Genoma Viral , Internet , Anotação de Sequência Molecular , Software
2.
Nucleic Acids Res ; 51(D1): D1188-D1195, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420891

RESUMO

The UCSC Genome Browser (https://genome.ucsc.edu) is an omics data consolidator, graphical viewer, and general bioinformatics resource that continues to serve the community as it enters its 23rd year. This year has seen an emphasis in clinical data, with new tracks and an expanded Recommended Track Sets feature on hg38 as well as the addition of a single cell track group. SARS-CoV-2 continues to remain a focus, with regular annotation updates to the browser and continued curation of our phylogenetic sequence placing tool, hgPhyloPlace, whose tree has now reached over 12M sequences. Our GenArk resource has also grown, offering over 2500 hubs and a system for users to request any absent assemblies. We have expanded our bigBarChart display type and created new ways to visualize data via bigRmsk and dynseq display. Displaying custom annotations is now easier due to our chromAlias system which eliminates the requirement for renaming sequence names to the UCSC standard. Users involved in data generation may also be interested in our new tools and trackDb settings which facilitate the creation and display of their custom annotations.


Assuntos
Bases de Dados Genéticas , Genômica , Humanos , COVID-19/epidemiologia , COVID-19/genética , Genômica/métodos , Internet , Filogenia , SARS-CoV-2/genética , Software , Navegador
3.
Nucleic Acids Res ; 50(D1): D1115-D1122, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718705

RESUMO

The UCSC Genome Browser, https://genome.ucsc.edu, is a graphical viewer for exploring genome annotations. The website provides integrated tools for visualizing, comparing, analyzing, and sharing both publicly available and user-generated genomic datasets. Data highlights this year include a collection of easily accessible public hub assemblies on new organisms, now featuring BLAT alignment and PCR capabilities, and new and updated clinical tracks (gnomAD, DECIPHER, CADD, REVEL). We introduced a new Track Sets feature and enhanced variant displays to aid in the interpretation of clinical data. We also added a tool to rapidly place new SARS-CoV-2 genomes in a global phylogenetic tree enabling researchers to view the context of emerging mutations in our SARS-CoV-2 Genome Browser. Other new software focuses on usability features, including more informative mouseover displays and new fonts.


Assuntos
Bases de Dados Genéticas , Navegador , Animais , Genoma Humano , Humanos , Filogenia , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Interface Usuário-Computador , Sequenciamento do Exoma
4.
Nucleic Acids Res ; 49(D1): D1046-D1057, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33221922

RESUMO

For more than two decades, the UCSC Genome Browser database (https://genome.ucsc.edu) has provided high-quality genomics data visualization and genome annotations to the research community. As the field of genomics grows and more data become available, new modes of display are required to accommodate new technologies. New features released this past year include a Hi-C heatmap display, a phased family trio display for VCF files, and various track visualization improvements. Striving to keep data up-to-date, new updates to gene annotations include GENCODE Genes, NCBI RefSeq Genes, and Ensembl Genes. New data tracks added for human and mouse genomes include the ENCODE registry of candidate cis-regulatory elements, promoters from the Eukaryotic Promoter Database, and NCBI RefSeq Select and Matched Annotation from NCBI and EMBL-EBI (MANE). Within weeks of learning about the outbreak of coronavirus, UCSC released a genome browser, with detailed annotation tracks, for the SARS-CoV-2 RNA reference assembly.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma/genética , Genômica/métodos , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Curadoria de Dados/métodos , Epidemias , Humanos , Internet , Camundongos , Anotação de Sequência Molecular/métodos , SARS-CoV-2/fisiologia , Software
5.
Hum Mutat ; 43(8): 998-1011, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35088925

RESUMO

The UCSC Genome Browser has been an important tool for genomics and clinical genetics since the sequence of the human genome was first released in 2000. As it has grown in scope to display more types of data it has also grown more complicated. The data, which are dispersed at many locations worldwide, are collected into one view on the Browser, where the graphical interface presents the data in one location. This supports the expertise of the researcher to interpret variants in the genome. Because the analysis of single nucleotide variants and copy number variants require interpretation of data at very different genomic scales, different data resources are required. We present here several Recommended Track Sets designed to facilitate the interpretation of variants in the clinic, offering quick access to datasets relevant to the appropriate scale.


Assuntos
Bases de Dados Genéticas , Software , Variações do Número de Cópias de DNA , Genoma Humano/genética , Genômica , Humanos , Internet
6.
Nucleic Acids Res ; 48(D1): D756-D761, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691824

RESUMO

The University of California Santa Cruz Genome Browser website (https://genome.ucsc.edu) enters its 20th year of providing high-quality genomics data visualization and genome annotations to the research community. In the past year, we have added a new option to our web BLAT tool that allows search against all genomes, a single-cell expression viewer (https://cells.ucsc.edu), a 'lollipop' plot display mode for high-density variation data, a RESTful API for data extraction and a custom-track backup feature. New datasets include Tabula Muris single-cell expression data, GeneHancer regulatory annotations, The Cancer Genome Atlas Pan-Cancer variants, Genome Reference Consortium Patch sequences, new ENCODE transcription factor binding site peaks and clusters, the Database of Genomic Variants Gold Standard Variants, Genomenon Mastermind variants and three new multi-species alignment tracks.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Software , Genômica , Humanos , Internet
7.
Nucleic Acids Res ; 47(D1): D853-D858, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407534

RESUMO

The UCSC Genome Browser (https://genome.ucsc.edu) is a graphical viewer for exploring genome annotations. For almost two decades, the Browser has provided visualization tools for genetics and molecular biology and continues to add new data and features. This year, we added a new tool that lets users interactively arrange existing graphing tracks into new groups. Other software additions include new formats for chromosome interactions, a ChIP-Seq peak display for track hubs and improved support for HGVS. On the annotation side, we have added gnomAD, TCGA expression, RefSeq Functional elements, GTEx eQTLs, CRISPR Guides, SNPpedia and created a 30-way primate alignment on the human genome. Nine assemblies now have RefSeq-mapped gene models.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Genômica , Software , Animais , Mapeamento Cromossômico , Genoma Humano/genética , Humanos , Anotação de Sequência Molecular , Navegador
8.
Nucleic Acids Res ; 46(D1): D762-D769, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29106570

RESUMO

The UCSC Genome Browser (https://genome.ucsc.edu) provides a web interface for exploring annotated genome assemblies. The assemblies and annotation tracks are updated on an ongoing basis-12 assemblies and more than 28 tracks were added in the past year. Two recent additions are a display of CRISPR/Cas9 guide sequences and an interactive navigator for gene interactions. Other upgrades from the past year include a command-line version of the Variant Annotation Integrator, support for Human Genome Variation Society variant nomenclature input and output, and a revised highlighting tool that now supports multiple simultaneous regions and colors.


Assuntos
Bases de Dados Genéticas , Genoma , Navegador , Sistemas CRISPR-Cas , Apresentação de Dados , Redes Reguladoras de Genes , Genoma Humano , Humanos , Anotação de Sequência Molecular , Terminologia como Assunto , Interface Usuário-Computador
9.
Nat Methods ; 13(3): 245-247, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780094

RESUMO

Complex biomedical analyses require the use of multiple software tools in concert and remain challenging for much of the biomedical research community. We introduce GenomeSpace (http://www.genomespace.org), a cloud-based, cooperative community resource that currently supports the streamlined interaction of 20 bioinformatics tools and data resources. To facilitate integrative analysis by non-programmers, it offers a growing set of 'recipes', short workflows to guide investigators through high-utility analysis tasks.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Humano/genética , Software , Mineração de Dados , Humanos , Internet , Integração de Sistemas
10.
Nucleic Acids Res ; 45(D1): D626-D634, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899642

RESUMO

Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browser's publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This year's highlights include newly designed home and gateway pages; a new 'multi-region' track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan.


Assuntos
Bases de Dados Genéticas , Ferramenta de Busca , Navegador , Animais , Biologia Computacional/métodos , Genoma , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Software
11.
Nucleic Acids Res ; 44(D1): D717-25, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26590259

RESUMO

For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Doença/genética , Genes , Genoma , Humanos , Camundongos , Anotação de Sequência Molecular , Software
12.
Bioinformatics ; 32(9): 1430-2, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26740527

RESUMO

UNLABELLED: Two new tools on the UCSC Genome Browser web site provide improved ways of combining information from multiple datasets, optionally including the user's own custom track data and/or data from track hubs. The Data Integrator combines columns from multiple data tracks, showing all items from the first track along with overlapping items from the other tracks. The Variant Annotation Integrator is tailored to adding functional annotations to variant calls; it offers a more restricted set of underlying data tracks but adds predictions of each variant's consequences for any overlapping or nearby gene transcript. When available, it optionally adds additional annotations including effect prediction scores from dbNSFP for missense mutations, ENCODE regulatory summary tracks and conservation scores. AVAILABILITY AND IMPLEMENTATION: The web tools are freely available at http://genome.ucsc.edu/ and the underlying database is available for download at http://hgdownload.cse.ucsc.edu/ The software (written in C and Javascript) is available from https://genome-store.ucsc.edu/ and is freely available for academic and non-profit usage; commercial users must obtain a license. CONTACT: angie@soe.ucsc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Animais , Bases de Dados Genéticas , Genômica , Humanos , Internet
13.
Nucleic Acids Res ; 43(Database issue): D670-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25428374

RESUMO

Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), 'mined the web' for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Animais , Cricetinae , Cães , Ebolavirus/genética , Expressão Gênica , Genoma , Internet , Camundongos , Anotação de Sequência Molecular , Fenótipo , Ratos , Software
14.
Nucleic Acids Res ; 42(Database issue): D764-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270787

RESUMO

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser's web-based tools provide an integrated environment for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic data sets. As of September 2013, the database contained genomic sequence and a basic set of annotation 'tracks' for ∼90 organisms. Significant new annotations include a 60-species multiple alignment conservation track on the mouse, updated UCSC Genes tracks for human and mouse, and several new sets of variation and ENCODE data. New software tools include a Variant Annotation Integrator that returns predicted functional effects of a set of variants uploaded as a custom track, an extension to UCSC Genes that displays haplotype alleles for protein-coding genes and an expansion of data hubs that includes the capability to display remotely hosted user-provided assembly sequence in addition to annotation data. To improve European access, we have added a Genome Browser mirror (http://genome-euro.ucsc.edu) hosted at Bielefeld University in Germany.


Assuntos
Bases de Dados Genéticas , Genoma , Genômica , Alelos , Animais , Genoma Humano , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Software
15.
Brief Bioinform ; 14(2): 144-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22908213

RESUMO

The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.


Assuntos
Bases de Dados Genéticas/estatística & dados numéricos , Genômica/estatística & dados numéricos , Armazenamento e Recuperação da Informação , Software , Animais , Biologia Computacional , Gráficos por Computador , Apresentação de Dados , Mineração de Dados , Humanos , Internet , Ferramenta de Busca , Alinhamento de Sequência
16.
Nucleic Acids Res ; 41(Database issue): D56-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193274

RESUMO

The Encyclopedia of DNA Elements (ENCODE), http://encodeproject.org, has completed its fifth year of scientific collaboration to create a comprehensive catalog of functional elements in the human genome, and its third year of investigations in the mouse genome. Since the last report in this journal, the ENCODE human data repertoire has grown by 898 new experiments (totaling 2886), accompanied by a major integrative analysis. In the mouse genome, results from 404 new experiments became available this year, increasing the total to 583, collected during the course of the project. The University of California, Santa Cruz, makes this data available on the public Genome Browser http://genome.ucsc.edu for visual browsing and data mining. Download of raw and processed data files are all supported. The ENCODE portal provides specialized tools and information about the ENCODE data sets.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Genômica , Animais , Humanos , Internet , Camundongos , Software
17.
Nucleic Acids Res ; 41(Database issue): D64-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23155063

RESUMO

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic datasets. As of September 2012, genomic sequence and a basic set of annotation 'tracks' are provided for 63 organisms, including 26 mammals, 13 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms, yeast and sea hare. In the past year 19 new genome assemblies have been added, and we anticipate releasing another 28 in early 2013. Further, a large number of annotation tracks have been either added, updated by contributors or remapped to the latest human reference genome. Among these are an updated UCSC Genes track for human and mouse assemblies. We have also introduced several features to improve usability, including new navigation menus. This article provides an update to the UCSC Genome Browser database, which has been previously featured in the Database issue of this journal.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Genoma Humano , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Software
18.
Nucleic Acids Res ; 40(Database issue): D918-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22086951

RESUMO

The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced 'track data hubs', which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browser's image.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma , Animais , Doença/genética , Genoma Humano , Genômica , Humanos , Internet , Anotação de Sequência Molecular , Fenótipo
19.
Nucleic Acids Res ; 40(Database issue): D912-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22075998

RESUMO

The Encyclopedia of DNA Elements (ENCODE) Consortium is entering its 5th year of production-level effort generating high-quality whole-genome functional annotations of the human genome. The past year has brought the ENCODE compendium of functional elements to critical mass, with a diverse set of 27 biochemical assays now covering 200 distinct human cell types. Within the mouse genome, which has been under study by ENCODE groups for the past 2 years, 37 cell types have been assayed. Over 2000 individual experiments have been completed and submitted to the Data Coordination Center for public use. UCSC makes this data available on the quality-reviewed public Genome Browser (http://genome.ucsc.edu) and on an early-access Preview Browser (http://genome-preview.ucsc.edu). Visual browsing, data mining and download of raw and processed data files are all supported. An ENCODE portal (http://encodeproject.org) provides specialized tools and information about the ENCODE data sets.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma Humano , Genoma , Camundongos/genética , Animais , Humanos , Internet , Anotação de Sequência Molecular , Software
20.
Am J Hum Genet ; 86(5): 749-64, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20466091

RESUMO

Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype ( approximately 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.


Assuntos
Transtornos Cromossômicos/genética , Anormalidades Congênitas/genética , Deficiências do Desenvolvimento/genética , Criança , Bandeamento Cromossômico , Humanos , Cariotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA