RESUMO
The performance of photocatalysts and photovoltaic devices can be enhanced by energetic charge carriers produced from plasmon decay, and the lifetime of these energetic carriers greatly affects overall efficiencies. Although hot electron lifetimes in plasmonic gold nanoparticles have been investigated, hot hole lifetimes have not been as thoroughly studied in plasmonic systems. Here, we demonstrate time-resolved emission upconversion microscopy and use it to resolve the lifetime and energy-dependent cooling of d-band holes formed in gold nanoparticles by plasmon excitation and by following plasmon decay into interband and then intraband electron-hole pairs.
RESUMO
Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.