RESUMO
Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.
Assuntos
Biologia , Microscopia Eletrônica , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Microscopia de Fluorescência , Tempo , Simulação por ComputadorRESUMO
The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.
Assuntos
Retículo Endoplasmático , Mitocôndrias , Saccharomyces cerevisiae , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Lipídeos , Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Sinaptotagminas/química , Sinaptotagminas/metabolismoRESUMO
Endocytosis, like many dynamic cellular processes, requires precise temporal and spatial orchestration of complex protein machinery to mediate membrane budding. To understand how this machinery works, we directly correlated fluorescence microscopy of key protein pairs with electron tomography. We systematically located 211 endocytic intermediates, assigned each to a specific time window in endocytosis, and reconstructed their ultrastructure in 3D. The resulting virtual ultrastructural movie defines the protein-mediated membrane shape changes during endocytosis in budding yeast. It reveals that clathrin is recruited to flat membranes and does not initiate curvature. Instead, membrane invagination begins upon actin network assembly followed by amphiphysin binding to parallel membrane segments, which promotes elongation of the invagination into a tubule. Scission occurs on average 9 s after initial bending when invaginations are â¼100 nm deep, releasing nonspherical vesicles with 6,400 nm2 mean surface area. Direct correlation of protein dynamics with ultrastructure provides a quantitative 4D resource.
Assuntos
Membrana Celular/ultraestrutura , Endocitose , Saccharomyces cerevisiae/ultraestrutura , Actinas/metabolismo , Tomografia com Microscopia Eletrônica , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismoRESUMO
At the end of mitosis, eukaryotic cells must segregate the two copies of their replicated genome into two new nuclear compartments1. They do this either by first dismantling and later reassembling the nuclear envelope in an 'open mitosis' or by reshaping an intact nucleus and then dividing it into two in a 'closed mitosis'2,3. Mitosis has been studied in a wide variety of eukaryotes for more than a century4, but how the double membrane of the nuclear envelope is split into two at the end of a closed mitosis without compromising the impermeability of the nuclear compartment remains unknown5. Here, using the fission yeast Schizosaccharomyces pombe (a classical model for closed mitosis5), genetics, live-cell imaging and electron tomography, we show that nuclear fission is achieved via local disassembly of nuclear pores within the narrow bridge that links segregating daughter nuclei. In doing so, we identify the protein Les1, which is localized to the inner nuclear envelope and restricts the process of local nuclear envelope breakdown to the bridge midzone to prevent the leakage of material from daughter nuclei. The mechanism of local nuclear envelope breakdown in a closed mitosis therefore closely mirrors nuclear envelope breakdown in open mitosis3, revealing an unexpectedly high conservation of nuclear remodelling mechanisms across diverse eukaryotes.
Assuntos
Mitose , Membrana Nuclear/metabolismo , Schizosaccharomyces/citologia , Divisão Celular , Modelos Biológicos , Poro Nuclear/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestruturaRESUMO
New concepts in cell organization emerged in a medieval castle during a snowy week in January 2017 in the middle of the Austrian Alps. The occasion was the 10th Annaberg EMBO workshop in Goldegg am See; organized by Gabriele Seethaler, Catherine Rabouille and Marino Zerial. There were 95 participants, including many who gave talks and presented posters, enjoying a familial and trusting atmosphere that stimulated lively exchange of (unpublished) results, new ideas and thoughts.
Assuntos
Fenômenos Fisiológicos Celulares , Células/ultraestrutura , Animais , HumanosRESUMO
Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi-scale analysis approach to study the molecular structure of Cvt vesicles. We report the oligomeric nature of the major Cvt cargo Ape1 with a combined 2.8 Å X-ray and negative stain EM structure, as well as the secondary cargo Ams1 with a 6.3 Å cryo-EM structure. We show that the major dodecameric cargo prApe1 exhibits a tendency to form higher-order chain structures that are broken upon interaction with the receptor Atg19 in vitro The stoichiometry of these cargo-receptor complexes is key to maintaining the size of the Cvt aggregate in vivo Using correlative light and electron microscopy, we further visualize key stages of Cvt vesicle biogenesis. Our findings suggest that Atg19 interaction limits Ape1 aggregate size while serving as a vehicle for vacuolar delivery of tetrameric Ams1.
Assuntos
Autofagia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidases/química , Aminopeptidases/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Membranas/metabolismo , Modelos Biológicos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genéticaRESUMO
Membrane contact sites (MCS) are platforms of physical contact between different organelles. They are formed through interactions involving lipids and proteins, and function in processes such as calcium and lipid exchange, metabolism and organelle biogenesis. In this article, we discuss emerging questions regarding the architecture, organisation and assembly of MCS, such as: What is the contribution of different components to the interaction between organelles? How is the specific composition of different types of membrane contacts sites established and maintained? How are proteins and lipids spatially organised at MCS and how does that influence their function? How dynamic are MCS on the molecular and ultrastructural level? We highlight current state of research and point out experimental approaches that promise to contribute to a spatiomechanistic understanding of MCS functions.
Assuntos
Membrana Celular/química , Membrana Celular/fisiologia , Organelas/fisiologia , Animais , Humanos , Transporte de Íons , Proteínas de Membrana Transportadoras/metabolismo , Transdução de SinaisRESUMO
Among the thirteen human aquaporins (AQP0-12), the primary structure of AQP8 is unique. By sequence alignment it is evident that mammalian AQP8s form a separate subfamily distinct from the other mammalian aquaporins. The constriction region of the pore determining the solute specificity deviates in AQP8 making it permeable to both ammonia and H(2)O(2) in addition to water. To better understand the selectivity and gating mechanism of aquaporins, high-resolution structures are necessary. So far, the structure of three human aquaporins (HsAQP1, HsAQP4, and HsAQP5) have been solved at atomic resolution. For mammalian aquaporins in general, high-resolution structures are only available for those belonging to the water-specific subfamily (including HsAQP1, HsAQP4 and HsAQP5). Thus, it is of interest to solve structures of other aquaporin subfamily members with different solute specificities. To achieve this the aquaporins need to be overexpressed heterologously and purified. Here we use the methylotrophic yeast Pichia pastoris as a host for the overexpression. A wide screen of different detergents and detergent-lipid combinations resulted in the solubilization of functional human AQP8 protein and in well-ordered 2D crystals. It also became evident that removal of amino acids constituting affinity tags was crucial to achieve highly ordered 2D crystals diffracting to 3Å.
Assuntos
Aquaporinas/química , Aquaporinas/biossíntese , Aquaporinas/genética , Aquaporinas/isolamento & purificação , Cristalografia por Raios X , Detergentes/química , Expressão Gênica , Humanos , Lipídeos/química , Pichia/genética , Pichia/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Relação Estrutura-AtividadeRESUMO
Membrane contact sites (MCSs) are areas of close proximity between organelles, implicated in transport of small molecules and in organelle biogenesis. Lipid transfer proteins at MCSs facilitate the distribution of lipid species between organelle membranes. Such exchange processes rely on the apposition of two different membranes delimiting distinct compartments and a cytosolic intermembrane space. Maintaining organelle identity while transferring molecules therefore implies control over MCS architecture both on the ultrastructural and molecular levels. Factors including intermembrane distance, density of resident proteins, and contact surface area fine-tune MCS function. Furthermore, the structural arrangement of lipid transfer proteins and associated proteins underpins the molecular mechanisms of lipid fluxes at MCSs. Thus, the architecture of MCSs emerges as an essential aspect of their function.
Assuntos
Membranas Mitocondriais , Organelas , Organelas/metabolismo , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Metabolismo dos Lipídeos , LipídeosRESUMO
Lipid droplets (LDs) are intracellular organelles responsible for storing surplus energy as neutral lipids. Their size and number vary enormously. In white adipocytes, LDs can reach 100 µm in diameter, occupying >90% of the cell. Cidec, which is strictly required for the formation of large LDs, is concentrated at interfaces between adjacent LDs and facilitates directional flux of neutral lipids from the smaller to the larger LD. The mechanism of lipid transfer is unclear, in part because the architecture of interfaces between LDs remains elusive. Here we visualize interfaces between LDs by electron cryo-tomography and analyze the kinetics of lipid transfer by quantitative live fluorescence microscopy. We show that transfer occurs through closely apposed monolayers, is slowed down by increasing the distance between the monolayers, and follows exponential kinetics. Our data corroborate the notion that Cidec facilitates pressure-driven transfer of neutral lipids through two "leaky" monolayers between LDs.
Assuntos
Gotículas Lipídicas , Proteínas , Gotículas Lipídicas/metabolismo , Proteínas/metabolismo , Lipídeos , Metabolismo dos LipídeosRESUMO
Traffic of proteins out of the endoplasmic reticulum (ER) is driven by the COPII coat, a layered protein scaffold that mediates the capture of cargo proteins and the remodeling of the ER membrane into spherical vesicular carriers. Although the components of this machinery have been genetically defined, and the mechanisms of coat assembly extensively explored in vitro, understanding the physical mechanisms of membrane remodeling in cells remains a challenge. Here we use correlative light and electron microscopy (CLEM) to visualize the nanoscale ultrastructure of membrane remodeling at ER exit sites (ERES) in yeast cells. Using various COPII mutants, we have determined the broad contribution that each layer of the coat makes to membrane remodeling. Our data suggest that inner coat components define the radius of curvature, whereas outer coat components facilitate membrane fission. The organization of the coat in conjunction with membrane biophysical properties determines the ultrastructure of vesicles and thus the efficiency of protein transport.
Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Saccharomyces cerevisiae , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microscopia Eletrônica , Transporte Proteico , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Cell-cell fusion is central for sexual reproduction, and generally involves gametes of different shapes and sizes. In walled fission yeast Schizosaccharomyces pombe, the fusion of h+ and h- isogametes requires the fusion focus, an actin structure that concentrates glucanase-containing vesicles for cell wall digestion. Here, we present a quantitative correlative light and electron microscopy (CLEM) tomographic dataset of the fusion site, which reveals the fusion focus ultrastructure. Unexpectedly, gametes show marked asymmetries: a taut, convex plasma membrane of h- cells progressively protrudes into a more slack, wavy plasma membrane of h+ cells. Asymmetries are relaxed upon fusion, with observations of ramified fusion pores. h+ cells have a higher exo-/endocytosis ratio than h- cells, and local reduction in exocytosis strongly diminishes membrane waviness. Reciprocally, turgor pressure reduction specifically in h- cells impedes their protrusions into h+ cells and delays cell fusion. We hypothesize that asymmetric membrane conformations, due to differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell-cell fusion.
Assuntos
Membrana Celular/metabolismo , Schizosaccharomyces/metabolismo , Membrana Celular/ultraestrutura , Fusão de Membrana , Microscopia Eletrônica de Varredura , Schizosaccharomyces/citologiaRESUMO
During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly accessible to imaging at high resolution in a near-native context. Here, we present a method that combines cryo-correlative light microscopy and electron tomography with human cerebral organoid technology to visualize growing axon tracts. Our data reveal a wealth of structural details on the arrangement of macromolecules, cytoskeletal components, and organelles in elongating axon shafts. In particular, the intricate shape of the endoplasmic reticulum is consistent with its role in fulfilling the high demand for lipid biosynthesis to support growth. Furthermore, the scarcity of ribosomes within the growing shaft suggests limited translational competence during expansion of this compartment. These findings establish our approach as a powerful resource for investigating the ultrastructure of defined neuronal compartments.
Assuntos
Axônios/ultraestrutura , Tomografia com Microscopia Eletrônica , Organoides/citologia , Encéfalo/citologia , Encéfalo/ultraestrutura , Microscopia Crioeletrônica , Células HeLa , Humanos , Substâncias Macromoleculares/metabolismo , Microscopia , Microscopia de Fluorescência , Organoides/ultraestruturaRESUMO
Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution.
Assuntos
Cristalização/métodos , Proteínas de Membrana/química , Aeromonas hydrophila/metabolismo , Animais , Aquaporinas/química , Aquaporinas/isolamento & purificação , Aquaporinas/ultraestrutura , Toxinas Bacterianas/química , Toxinas Bacterianas/isolamento & purificação , Microscopia Crioeletrônica , Cristalização/instrumentação , Ciclodextrinas/química , Humanos , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Proteínas Citotóxicas Formadoras de Poros/ultraestruturaRESUMO
Cellular membranes differ in their molecular organisation, shape, and dynamics. Knowing how these properties of membrane architecture relate to the presence and function of specific membrane components is fundamental for understanding membrane-associated cellular processes. Correlative light and electron microscopy (CLEM) is ideally poised to address such problems. Fluorescence microscopy allows identification of cellular membranes through labelled components and can provide temporal information, while electron microscopy allows visualisation of the structure of the same membranes at high resolution. In recent years, various CLEM protocols have been applied to gain insights into cellular membrane architecture. Here, we review conceptually novel approaches by which CLEM has provided insights on membrane reshaping, subcellular localisation of components, host-pathogen interactions, and has answered longstanding mechanistic questions.
Assuntos
Membrana Celular/metabolismo , Microscopia , Animais , Membrana Celular/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Organelas/metabolismo , Organelas/ultraestruturaRESUMO
Pathogenic bacteria enter the cytosol of host cells through uptake into bacteria-containing vacuoles (BCVs) and subsequent rupture of the vacuolar membrane [1]. Bacterial invaders are sensed either directly, through cytosolic pattern-recognition receptors specific for bacterial ligands, or indirectly, through danger receptors that bind host molecules displayed in an abnormal context, for example, glycans on damaged BCVs [2-4]. In contrast to damage caused by Listeria monocytogenes, a Gram-positive bacterium, BCV rupture by Gram-negative pathogens such as Shigella flexneri or Salmonella Typhimurium remains incompletely understood [5, 6]. The latter may cause membrane damage directly, when inserting their Type Three Secretion needles into host membranes, or indirectly through translocated bacterial effector proteins [7-9]. Here, we report that sphingomyelin, an abundant lipid of the luminal leaflet of BCV membranes, and normally absent from the cytosol, becomes exposed to the cytosol as an early predictive marker of BCV rupture by Gram-negative bacteria. To monitor subcellular sphingomyelin distribution, we generated a live sphingomyelin reporter from Lysenin, a sphingomyelin-specific toxin from the earthworm Eisenia fetida [10, 11]. Using super resolution live imaging and correlative light and electron microscopy (CLEM), we discovered that BCV rupture proceeds through two distinct successive stages: first, sphingomyelin is gradually translocated into the cytosolic leaflet of the BCV, invariably followed by cytosolic exposure of glycans, which recruit galectin-8, indicating bacterial entry into the cytosol. Exposure of sphingomyelin on BCVs may therefore act as an early danger signal alerting the cell to imminent bacterial invasion.
Assuntos
Enterobacteriaceae/patogenicidade , Esfingomielinas/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Membrana Celular/patologia , Citosol/metabolismo , Citosol/microbiologia , Galectinas/metabolismo , Humanos , Polissacarídeos/efeitos adversos , Polissacarídeos/metabolismo , Esfingomielinas/efeitos adversos , Vacúolos/patologiaRESUMO
Accurate maintenance of organelle identity in the secretory pathway relies on retention and retrieval of resident proteins. In the endoplasmic reticulum (ER), secretory proteins are packaged into COPII vesicles that largely exclude ER residents and misfolded proteins by mechanisms that remain unresolved. Here we combined biochemistry and genetics with correlative light and electron microscopy (CLEM) to explore how selectivity is achieved. Our data suggest that vesicle occupancy contributes to ER retention: in the absence of abundant cargo, nonspecific bulk flow increases. We demonstrate that ER leakage is influenced by vesicle size and cargo occupancy: overexpressing an inert cargo protein or reducing vesicle size restores sorting stringency. We propose that cargo recruitment into vesicles creates a crowded lumen that drives selectivity. Retention of ER residents thus derives in part from the biophysical process of cargo enrichment into a constrained spherical membrane-bound carrier.
Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Via Secretória/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Reporter , Complexo de Golgi/genética , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Imagem Óptica , Transporte Proteico , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
During apoptosis, Bcl-2 proteins such as Bax and Bak mediate the release of pro-apoptotic proteins from the mitochondria by clustering on the outer mitochondrial membrane and thereby permeabilizing it. However, it remains unclear how outer membrane openings form. Here, we combined different correlative microscopy and electron cryo-tomography approaches to visualize the effects of Bax activity on mitochondria in human cells. Our data show that Bax clusters localize near outer membrane ruptures of highly variable size. Bax clusters contain structural elements suggesting a higher order organization of their components. Furthermore, unfolding of inner membrane cristae is coupled to changes in the supramolecular assembly of ATP synthases, particularly pronounced at membrane segments exposed to the cytosol by ruptures. Based on our results, we propose a comprehensive model in which molecular reorganizations of the inner membrane and sequestration of outer membrane components into Bax clusters interplay in the formation of outer membrane ruptures. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Assuntos
Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/genética , Proteína X Associada a bcl-2/ultraestrutura , Apoptose/genética , Microscopia Crioeletrônica , Citosol/química , Citosol/metabolismo , Células HeLa , Humanos , Mitocôndrias/genética , Membranas Mitocondriais/química , ATPases Mitocondriais Próton-Translocadoras/química , Multimerização Proteica/genética , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genéticaRESUMO
Lipid flow between cellular organelles occurs via membrane contact sites. Extended-synaptotagmins, known as tricalbins in yeast, mediate lipid transfer between the endoplasmic reticulum (ER) and plasma membrane (PM). How these proteins regulate membrane architecture to transport lipids across the aqueous space between bilayers remains unknown. Using correlative microscopy, electron cryo-tomography, and high-throughput genetics, we address the interplay of architecture and function in budding yeast. We find that ER-PM contacts differ in protein composition and membrane morphology, not in intermembrane distance. In situ electron cryo-tomography reveals the molecular organization of tricalbin-mediated contacts, suggesting a structural framework for putative lipid transfer. Genetic analysis uncovers functional overlap with cellular lipid routes, such as maintenance of PM asymmetry. Further redundancies are suggested for individual tricalbin protein domains. We propose a modularity of molecular and structural functions of tricalbins and of their roles within the cellular network of lipid distribution pathways.