Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 63(6): 1044-54, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27618487

RESUMO

Cohesin is a ring-shaped protein complex that is capable of embracing DNA. Most of the ring circumference is comprised of the anti-parallel intramolecular coiled coils of the Smc1 and Smc3 proteins, which connect globular head and hinge domains. Smc coiled coil arms contain multiple acetylated and ubiquitylated lysines. To investigate the role of these modifications, we substituted lysines for arginines to mimic the unmodified state and uncovered genetic interaction between the Smc arms. Using scanning force microscopy, we show that wild-type Smc arms associate with each other when the complex is not on DNA. Deacetylation of the Smc1/Smc3 dimers promotes arms' dissociation. Smc arginine mutants display loose packing of the Smc arms and, although they dimerize at the hinges, fail to connect the heads and associate with the DNA. Our findings highlight the importance of a "collapsed ring," or "rod," conformation of cohesin for its loading on the chromosomes.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , DNA Fúngico/química , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Acetilação , Substituição de Aminoácidos , Animais , Arginina/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Cromátides/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/química , Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Clonagem Molecular , DNA Fúngico/genética , DNA Fúngico/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Transdução de Sinais , Spodoptera , Coesinas
2.
PLoS Genet ; 8(8): e1002856, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912589

RESUMO

Cohesin is a protein complex that forms a ring around sister chromatids thus holding them together. The ring is composed of three proteins: Smc1, Smc3 and Scc1. The roles of three additional proteins that associate with the ring, Scc3, Pds5 and Wpl1, are not well understood. It has been proposed that these three factors form a complex that stabilizes the ring and prevents it from opening. This activity promotes sister chromatid cohesion but at the same time poses an obstacle for the initial entrapment of sister DNAs. This hindrance to cohesion establishment is overcome during DNA replication via acetylation of the Smc3 subunit by the Eco1 acetyltransferase. However, the full mechanistic consequences of Smc3 acetylation remain unknown. In the current work, we test the requirement of Scc3 and Pds5 for the stable association of cohesin with DNA. We investigated the consequences of Scc3 and Pds5 depletion in vivo using degron tagging in budding yeast. The previously described DHFR-based N-terminal degron as well as a novel Eco1-derived C-terminal degron were employed in our study. Scc3 and Pds5 associate with cohesin complexes independently of each other and require the Scc1 "core" subunit for their association with chromosomes. Contrary to previous data for Scc1 downregulation, depletion of either Scc3 or Pds5 had a strong effect on sister chromatid cohesion but not on cohesin binding to DNA. Quantity, stability and genome-wide distribution of cohesin complexes remained mostly unchanged after the depletion of Scc3 and Pds5. Our findings are inconsistent with a previously proposed model that Scc3 and Pds5 are cohesin maintenance factors required for cohesin ring stability or for maintaining its association with DNA. We propose that Scc3 and Pds5 specifically function during cohesion establishment in S phase.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , DNA Fúngico/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
3.
Med Hypotheses ; 115: 29-34, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29685192

RESUMO

Non-coding RNAs have emerged as essential contributors to neuroinflammation. The Alu element is the most abundant potential source of non-coding RNA in the human genome represented by over 1.1 million copies totaling ∼10% of the genome's mass. Accumulation of "Alu RNA" was observed in the brains of individuals with dementia and Creutzfeldt-Jakob disease - a degenerative brain disorder. "Alu RNAs" activate inflammatory pathways and apoptosis in the non-neural cells. In particular, the "Alu RNA" cytotoxicity is suggested as a mechanism in retinal pigment epithelium (RPE), a compartment damaged in the process of age-related macular degeneration. In RPE cells, the deficiency of Dicer is reported to lead to an accumulation of P3Alu transcripts, subsequent activation of the ERK1/2 signaling pathway, and the formation of NLRP3 inflammasome. In turn, these events result in RPE cell death by apoptosis. Importantly, RPE cells are of neuroectodermal origin, these cells display more similarity to neurons than to other epithelial cells. Thus, it is plausible that the mechanisms of "Alu RNA" cytotoxicity in brain neurons are similar to that in RPE. We hypothesize that accumulation of polymerase III-transcribed noncoding RNA of Alu (P3Alu) may contribute to both neuroinflammation and neurodegeneration associated with Alzheimer's disease (AD) and other degenerative brain disorders. This hypothesis points toward a novel molecular pathway not previously considered for the treatment of AD.


Assuntos
Elementos Alu , Doença de Alzheimer/genética , Doenças Neurodegenerativas/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Inflamassomos/metabolismo , Modelos Neurológicos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , RNA Polimerase III/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia
4.
Insect Biochem Mol Biol ; 76: 38-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27395781

RESUMO

Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor.


Assuntos
Dipeptidil Peptidase 4/genética , Proteínas de Insetos/genética , Tenebrio/genética , Sequência de Aminoácidos , Animais , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Trato Gastrointestinal/enzimologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Alinhamento de Sequência , Tenebrio/enzimologia , Tenebrio/crescimento & desenvolvimento
5.
Structure ; 24(11): 1991-1999, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27692962

RESUMO

The cohesin ring, which is composed of the Smc1, Smc3, and Scc1 subunits, topologically embraces two sister chromatids from S phase until anaphase to ensure their precise segregation to the daughter cells. The opening of the ring is required for its loading on the chromosomes and unloading by the action of Wpl1 protein. Both loading and unloading are dependent on ATP hydrolysis by the Smc1 and Smc3 "head" domains, which engage to form two composite ATPase sites. Based on the available structures, we modeled the Saccharomyces cerevisiae Smc1/Smc3 head heterodimer and discovered that the Smc1/Smc3 interfaces at the two ATPase sites differ in the extent of protein contacts and stability after ATP hydrolysis. We identified smc1 and smc3 mutations that disrupt one of the interfaces and block the Wpl1-mediated release of cohesin from DNA. Thus, we provide structural insights into how the cohesin heads engage with each other.


Assuntos
Acetiltransferases/genética , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dimerização , Hidrólise , Modelos Moleculares , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Coesinas
6.
Cell Cycle ; 9(22): 4501-5, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21084861

RESUMO

The budding yeast Saccharomyces cerevisiae actively transports adverse factors (e.g. oxidized proteins) from the daughter to mother cells. The transport is believed to ensure that the daughters are born "young", thus preventing clonal senescence. Is this the only reason for the existence of such transport? We subjected yeast cells to various stress conditions and compared survival of mother and daughter cells. It was found that replicative age-dependent mortality under our experimental stress conditions was U-shaped: the resistance of both virgin daughters and old mother cells (more than three bud scars) was lower compared to the young mothers. SIR2 mutants were shown to fail to maintain the mother-daughter asymmetry. We showed that sir2 knockout affects the relative stress resistance in favor of the mothers. Thus, daughter cells are more vulnerable to a variety of stresses than the young mothers, and Sir2-dependent transport of the adverse factors acts to equalize the resistance.


Assuntos
Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Senescência Celular , Peptídeos/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Estresse Fisiológico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA