Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Med ; 30(1): 42, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519881

RESUMO

BACKGROUND: The formation and accumulation of cholesterol crystals (CC) at the lesion site is a hallmark of atherosclerosis. Although studies have shown the importance of vascular smooth muscle cells (VSMCs) in the disease atherosclerosis, little is known about the molecular mechanism behind the uptake of CC in VSMCs and their role in modulating immune response. METHODS: Human aortic smooth muscle cells were cultured and treated with CC. CC uptake and CC mediated signaling pathway and protein induction were studied using flow cytometry, confocal microscopy, western blot and Olink proteomics. Conditioned medium from CC treated VSMCs was used to study neutrophil adhesion, ROS production and phagocytosis. Neutrophil extracellular traps (NETs) formations were visualized using confocal microscopy. RESULTS: VSMCs and macrophages were found around CC clefts in human carotid plaques. CC uptake in VSMCs are largely through micropinocytosis and phagocytosis via PI3K-AkT dependent pathway. The uptake of CC in VSMCs induce the release inflammatory proteins, including IL-33, an alarming cytokine. Conditioned medium from CC treated VSMCs can induce neutrophil adhesion, neutrophil reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) formation. IL-33 neutralization in conditioned medium from CC treated VSMCs inhibited neutrophil ROS production and NETs formation. CONCLUSION: We demonstrate that VSMCs due to its vicinity to CC clefts in human atherosclerotic lesion can modulate local immune response and we further reveal that the interaction between CC and VSMCs impart an inflammatory milieu in the atherosclerotic microenvironment by promoting IL-33 dependent neutrophil influx and NETs formation.


Assuntos
Aterosclerose , Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Citocinas/metabolismo , Músculo Liso Vascular/metabolismo , Interleucina-33 , Espécies Reativas de Oxigênio/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201392

RESUMO

Laminins are essential components of the basement membranes, expressed in a tissue- and cell-specific manner under physiological conditions. During inflammatory circumstances, such as atherosclerosis, alterations in laminin composition within vessels have been observed. Our study aimed to assess the influence of tumor necrosis factor-alpha (TNF), a proinflammatory cytokine abundantly found in atherosclerotic lesions, on endothelial laminin gene expression and the effects of laminin-332 (LN332) on endothelial cells' behavior. We also evaluated the expression of LN332-encoding genes in human carotid atherosclerotic plaques. Our findings demonstrate that TNF induces upregulation of LAMB3 and LAMC2, which, along with LAMA3, encode the LN332 isoform. Endothelial cells cultured on recombinant LN332 exhibit decreased claudin-5 expression and display a loosely connected phenotype, with an elevated expression of chemokines and leukocyte adhesion molecules, enhancing their attractiveness and adhesion to leukocytes in vitro. Furthermore, LAMB3 and LAMC2 are upregulated in human carotid plaques and show a positive correlation with TNF expression. In summary, TNF stimulates the expression of LN332-encoding genes in human endothelial cells and LN332 promotes an endothelial phenotype characterized by compromised junctional integrity and increased leukocyte interaction. These findings highlight the importance of basement membrane proteins for endothelial integrity and the potential role of LN332 in atherosclerosis.


Assuntos
Aterosclerose , Moléculas de Adesão Celular , Calinina , Laminina , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Laminina/metabolismo , Laminina/genética , Células Endoteliais/metabolismo , Fenótipo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Adesão Celular/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Cultivadas
3.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012119

RESUMO

Trimethylamine-N-oxide (TMAO) is a uremic toxin, which has been associated with chronic kidney disease (CKD). Renal tubular epithelial cells play a central role in the pathophysiology of CKD. Megalin is an albumin-binding surface receptor on tubular epithelial cells, which is indispensable for urine protein reabsorption. To date, no studies have investigated the effect of TMAO on megalin expression and the functional properties of human tubular epithelial cells. The aim of this study was first to identify the functional effect of TMAO on human renal proximal tubular cells and second, to unravel the effects of TMAO on megalin-cubilin receptor expression. We found through global gene expression analysis that TMAO was associated with kidney disease. The microarray analysis also showed that megalin expression was suppressed by TMAO, which was also validated at the gene and protein level. High glucose and TMAO was shown to downregulate megalin expression and albumin uptake similarly. We also found that TMAO suppressed megalin expression via PI3K and ERK signaling. Furthermore, we showed that candesartan, dapagliflozin and enalaprilat counteracted the suppressive effect of TMAO on megalin expression. Our results may further help us unravel the role of TMAO in CKD development and to identify new therapeutic targets to counteract TMAOs effects.


Assuntos
Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Insuficiência Renal Crônica , Albuminas/metabolismo , Endocitose , Células Epiteliais/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Sistema de Sinalização das MAP Quinases , Metilaminas , Fosfatidilinositol 3-Quinases/metabolismo , Insuficiência Renal Crônica/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769294

RESUMO

Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, has previously been shown to be implicated in chronic kidney disease. A high TMAO-containing diet has been found to cause tubulointerstitial renal fibrosis in mice. However, today there are no data linking specific molecular pathways with the effect of TMAO on human renal fibrosis. The aim of this study was to investigate the fibrotic effects of TMAO on renal fibroblasts and to elucidate the molecular pathways involved. We found that TMAO promoted renal fibroblast activation and fibroblast proliferation via the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 signaling. We also found that TMAO increased the total collagen production from renal fibroblasts via the PERK/Akt/mTOR pathway. However, TMAO did not induce fibronectin or TGF-ß1 release from renal fibroblasts. We have unraveled that the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 mediates TMAO's fibrotic effect on human renal fibroblasts. Our results can pave the way for future research to further clarify the molecular mechanism behind TMAO's effects and to identify novel therapeutic targets in the context of chronic kidney disease.


Assuntos
Caspase 1/metabolismo , Rim/patologia , Metilaminas/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , eIF-2 Quinase/metabolismo
5.
Scand J Gastroenterol ; 55(12): 1454-1466, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33142068

RESUMO

OBJECTIVES: Faecal microbiota transfer (FMT) consists of the infusion of donor faecal material into the intestine of patients with the aim to restore a disturbed gut microbiota. METHODS: In this pilot study (NCT03275467), the effect of three repeated FMTs (day 0, two weeks, four weeks) was studied and followed up for six months in nine collagenous colitis (CC) patients, using two stool donors. RESULTS: Five patients had an active disease at the time of baseline sampling. The primary endpoint (remission at six weeks, defined as <3 stools whereof <1 watery stool per day) was achieved by two of these patients, and by one at eight weeks. Overall, in all nine patients, FMT did not result in a significant reduction of watery stools, assessed by daily diary. However, diarrhoea (assessed by gastrointestinal symptom rating scale) was significantly improved at four (p = .038) and eight weeks (p = .038), indigestion at eight (p = .045) and 12 weeks (p = .006), disease-related worries at four (p = .027) and eight weeks (p = .027), and quality of life at six months (p = .009). FMT resulted in an increased number of lamina propria lymphocytes, possibly indicating an initial mucosal immune activation. No serious adverse events, no systemic effects, and no changes in faecal calprotectin and psychological symptoms were observed. CONCLUSIONS: FMT is able to improve symptoms in a yet undefined subset of CC patients. Further studies could help to characterise this subset and to understand if these results can be generalised to all microscopic colitis patients.


Assuntos
Colite Colagenosa , Colite Ulcerativa , Microbiota , Colite Colagenosa/terapia , Fezes , Humanos , Projetos Piloto , Qualidade de Vida
6.
Mediators Inflamm ; 2015: 132458, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25948880

RESUMO

Microscopic colitis (MC), comprising collagenous colitis (CC) and lymphocytic colitis (LC), is a common cause of chronic diarrhea. Various immune cell infiltrations in the epithelium and lamina propria are seen in MC immunopathology. We compared gene and protein expressions of different immune cell attracting chemokines and their receptors in colon biopsies from MC patients in active disease or histopathological remission (CC/LC-HR) with controls, using qRT-PCR and Luminex, respectively. CC and LC patients with active disease demonstrated a mixed chemokine profile with significantly enhanced gene and/or protein expressions of the chemokines CCL2, CCL3, CCL4, CCL5, CCL7, CCL22, CXCL8, CXCL9, CXCL10, CXCL11, and CX3CL1 and the receptors CCR2, CCR3, CCR4, CXCR1, CXCR2, and CX3CR1. Enhanced chemokine/chemokine receptor gene and protein levels in LC-HR patients were similar to LC patients, whereas CC-HR patients demonstrated almost normalized levels. These findings expand the current understanding of the involvement of various immune cells in MC immunopathology and endorse chemokines as potential diagnostic markers as well as therapeutic candidates. Moreover, this study further supports the hypothesis that CC and LC are two different entities due to differences in their immunoregulatory responses.


Assuntos
Quimiocinas/metabolismo , Colite Linfocítica/metabolismo , Colite Microscópica/metabolismo , Colo/metabolismo , Linfócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Coortes , Colite Linfocítica/imunologia , Colite Microscópica/imunologia , Colo/imunologia , Colonoscopia , Diarreia/diagnóstico , Feminino , Regulação da Expressão Gênica , Humanos , Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
7.
Int Immunol ; 25(1): 35-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22962436

RESUMO

Gαi2-deficient mice spontaneously develop colitis. Using xMAP technology and RT-PCR, we investigated cytokine/chemokine profiles during histologically defined phases of disease: (i) no/mild, (ii) moderate, (iii) severe colitis without dysplasia/cancer and (iv) severe colitis with dysplasia/cancer, compared with age-matched wild-type (WT) littermates. Colonic dysplasia was observed in 4/11 mice and cancer in 1/11 mice with severe colitis. The histology correlated with progressive increases in colon weight/cm and spleen weight, and decreased thymus weight, all more advanced in mice with dysplasia/cancer. IL-1ß, IL-6, IL-12p40, IL-17, TNF-α, CCL2 and CXCL1 protein levels in colons, but not small intestines increased with colitis progression and were significantly increased in mice with moderate and severe colitis compared with WT mice, irrespective of the absence/presence of dysplasia/cancer. CCL5 did not change during colitis progression. Colonic IL-17 transcription increased 40- to 70-fold in all stages of colitis, whereas IFN-γ mRNA was gradually up-regulated 12- to 55-fold with colitis progression, and further to 62-fold in mice with dysplasia/cancer. IL-27 mRNA increased 4- to 15-fold during the course of colitis, and colonic IL-21 transcription increased 3-fold in mice with severe colitis, both irrespective of the absence/presence of dysplasia/cancer. FoxP3 transcription was significantly enhanced (3.5-fold) in mice with moderate and severe colitis, but not in mice with dysplasia/cancer, compared with WT mice. Constrained correspondence analysis demonstrated an association between increased protein levels of TNF-α, CCL2, IL-1ß, IL-6 and CXCL1 and dysplasia/cancer. In conclusion, colonic responses are dominated by a mixed T(h)1/T(h)17 phenotype, with increasing T(h)1 cytokine transcription with progression of colitis in Gαi2(-/-) mice.


Assuntos
Colite/imunologia , Colo/imunologia , Neoplasias do Colo/imunologia , Citocinas/imunologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/deficiência , Células Th1/imunologia , Células Th17/imunologia , Animais , Colite/genética , Colite/metabolismo , Colite/patologia , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citocinas/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/imunologia , Regulação da Expressão Gênica/imunologia , Intestino Delgado/imunologia , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Índice de Gravidade de Doença , Transdução de Sinais , Baço/imunologia , Baço/patologia , Células Th1/metabolismo , Células Th1/patologia , Equilíbrio Th1-Th2 , Células Th17/metabolismo , Células Th17/patologia , Timo/imunologia , Timo/patologia , Transcrição Gênica/imunologia
8.
Mediators Inflamm ; 2014: 879843, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25332518

RESUMO

Soluble factors from intestinal mucosal cells contribute to immune homeostasis in the gut. We have established an in vitro model to investigate the regulatory role of soluble factors from inflamed intestinal mucosa of collagenous colitis (CC) patients in the differentiation of T cells. Peripheral blood CD4(+) T cells from healthy donors were polyclonally activated in the presence of conditioned medium (CM) generated from denuded biopsies (DNB) or isolated lamina propria mononuclear cells (LPMCs) from mucosal biopsies from CC patients compared to noninflamed controls, to determine proliferation and secretion of cytokines involved in T-cell differentiation. Compared to controls, we observed significantly increased production of the proinflammatory cytokines IFN-γ, IL-17A, IL-6, and IL-1ß and the anti-inflammatory cytokines IL-4 and IL-10 in the presence of CC-DNB-CM. The most pronounced effect of CC-LPMC-CM on peripheral CD4(+) T cells was a trend towards increased production of IL-17A and IL-10. A trend towards reduced inhibition of T-cell proliferation was noted in the presence of CC-DNB-CM. In conclusion, our in vitro model reveals implications of soluble factors from CC colonic mucosa on peripheral T cells, enhancing their production of both pro- and anti-inflammatory cytokines.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Colite Colagenosa/imunologia , Interleucina-10/biossíntese , Interleucina-17/biossíntese , Estudos de Casos e Controles , Meios de Cultivo Condicionados , Citocinas/biossíntese , Feminino , Humanos , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Mucosa Intestinal/imunologia , Masculino , Modelos Imunológicos
9.
Pathogens ; 12(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111409

RESUMO

Urinary tract infections (UTIs) are among the most common infections in humans and are often caused by uropathogenic E. coli (UPEC). Trimethylamine N-oxide (TMAO) is a proinflammatory metabolite that has been linked to vascular inflammation, atherosclerosis, and chronic kidney disease. As of today, no studies have investigated the effects of TMAO on infectious diseases like UTIs. The aim of this study was to investigate whether TMAO can aggravate bacterial colonization and the release of inflammatory mediators from bladder epithelial cells during a UPEC infection. We found that TMAO aggravated the release of several key cytokines (IL-1ß and IL-6) and chemokines (IL-8, CXCL1 and CXCL6) from bladder epithelial cells during a CFT073 infection. We also found that CFT073 and TMAO mediate increased release of IL-8 from bladder epithelial cells via ERK 1/2 signaling and not bacterial growth. Furthermore, we showed that TMAO enhances UPEC colonization of bladder epithelial cells. The data suggest that TMAO may also play a role in infectious diseases. Our results can be the basis of further research to investigate the link between diet, gut microbiota, and urinary tract infection.

10.
Front Cardiovasc Med ; 9: 831039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282365

RESUMO

The balance between pro- and anti-inflammatory cytokines released by immune and non-immune cells plays a decisive role in the progression of atherosclerosis. Interleukin (IL)-17A has been shown to accelerate atherosclerosis. In this study, we investigated the effect on pro-inflammatory mediators and atherosclerosis development of an Affibody molecule that targets IL17A. Affibody molecule neutralizing IL17A, or sham were administered in vitro to human aortic smooth muscle cells (HAoSMCs) and murine NIH/3T3 fibroblasts and in vivo to atherosclerosis-prone, hyperlipidaemic ApoE-/- mice. Levels of mediators of inflammation and development of atherosclerosis were compared between treatments. Exposure of human smooth muscle cells and murine NIH/3T3 fibroblasts in vitro to αIL-17A Affibody molecule markedly reduced IL6 and CXCL1 release in supernatants compared with sham exposure. Treatment of ApoE-/- mice with αIL-17A Affibody molecule significantly reduced plasma protein levels of CXCL1, CCL2, CCL3, HGF, PDGFB, MAP2K6, QDPR, and splenocyte mRNA levels of Ccxl1, Il6, and Ccl20 compared with sham exposure. There was no significant difference in atherosclerosis burden between the groups. In conclusion, administration of αIL17A Affibody molecule reduced levels of pro-inflammatory mediators and attenuated inflammation in ApoE-/- mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA