Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Drug Dev Ind Pharm ; 49(5): 377-391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37216496

RESUMO

OBJECTIVE: The present study aimed to identify a safe and effective non-oncology drug cocktail as an alternative to toxic chemotherapeutics for hepatocellular carcinoma (HCC) treatment. The assessment of cytotoxicity of cocktail (as co-adjuvant) in combination with chemotherapeutic docetaxel (DTX) is also aimed. Further, we aimed to develop an oral solid self-emulsifying drug delivery system (S-SEDDS) for the simultaneous delivery of identified drugs. SIGNIFICANCE: The identified non-oncology drug cocktail could overcome the shortage of anticancer therapeutics and help to reduce cancer-related mortality. Moreover, the developed S-SEDDS could be an ideal system for concurrent oral delivery of non-oncology drug combinations. METHODS: The non-oncology drugs (alone and in combinations) were screened in vitro for anticancer effect (against HepG2 cells) using (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; MTT) dye assay, and cell cycle arresting and apoptotic behaviors using the fluorescence-activated cell sorting (FACS) technique. The S-SEDDS is composed of drugs such as ketoconazole (KCZ), disulfiram (DSR), tadalafil (TLF), and excipients like span-80, tween-80, soybean oil, Leciva S-95, Poloxamer F108 (PF-108), and Neusilin® US2 (adsorbent carrier), which was developed and characterized. RESULTS: The cocktail composed of KCZ, DSR, and TLF has showed substantial cytotoxicity (at the lowest concentration of 3.3 pmol), HepG2 cell arrest at G0/G1 and S phases, and substantial cell death via apoptosis. The DTX inclusion into this cocktail has further resulted in increased cytotoxicity, cell arrest at the G2/M phase, and cell necrosis. The optimized blank liquid SEDDS that remains transparent without phase separation for more than 6 months is used for the preparation of drug-loaded liquid SEDDS (DL-SEDDS). The optimized DL-SEDDS with low viscosity, good dispersibility, considerable drug retention upon dilution, and smaller particle size is further converted into drug-loaded solid SEDDS (DS-SEDDS). The final DS-SEDDS demonstrated acceptable flowability and compression characteristics, significant drug retention (more than 93%), particle size in nano range (less than 500 nm), and nearly spherical morphology following dilutions. The DS-SEDDS showed substantially increased cytotoxicity and Caco-2 cell permeability than plain drugs. Furthermore, DS-SEDDS containing only non-oncology drugs caused lower in vivo toxicity (only 6% body weight loss) than DS-SEDDS containing non-oncology drugs with DTX (about 10% weight loss). CONCLUSION: The current study revealed a non-oncology drug combination effective against HCC. Further, it is concluded that the developed S-SEDDS containing non-oncology drug combination alone and in combination with DTX could be a promising alternative to toxic chemotherapeutics for the effective oral treatment of hepatic cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Emulsões , Células CACO-2 , Reposicionamento de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Excipientes , Docetaxel/farmacologia , Administração Oral , Solubilidade
2.
AAPS PharmSciTech ; 24(5): 106, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085596

RESUMO

Simvastatin (SMV) is noticed as a repurposed candidate to be effective against breast cancer (BC). However, poor solubility, dose-limiting toxicities, and side effects are critical hurdles in its use against BC. The above drawbacks necessitate the site-specific (localized) delivery of SMV via suitable nanocarriers. Therefore, the present study intended to develop SMV nanostructured lipid carrier (NLC)-based gel using carbopol-934 as a gelling agent to achieve local delivery and improve patient compliance while combating BC. The SMV NLCs were fabricated by melt-emulsification ultrasonication technique using stearic acid as solid lipid, olive oil (OO) as liquid lipid, tween 20 as a surfactant, and PEG-200 as a co-surfactant, and optimized by Box-Behnken design. The optimized SMV-loaded NLCs displayed % entrapment efficiency of 91.66 ± 5.2% and particle size of 182 ± 11.9 nm. The pH of NLC-based gels prepared using a 2.0% w/v of carbopol-934 was found in the range of 5.3-5.6 while the viscosity was in the range of 5.1-6.6 Pa.S. Besides, NLC-based gels exhibited higher and controlled SMV release (71-76%) at pH 6.8 and (78-84%) at pH 5.5 after 48 h than SMV conventional gel (37%) at both pH 6.8 and 5.5 after 48 h. The ex vivo permeation of SMV from NLC-based gel was 3.8 to 4.5 times more than conventional gel. Notably, SMV-loaded NLCs displayed ameliorated cytotoxicity than plain SMV against MCF-7 and MDA-MB-231 BC cells. No substantial difference was noticed in the cytotoxicity of NLC-based gels and pure SMV against both cell lines. The SMV NLC-based gel exhibited the absence of skin irritation in vivo in the mice following topical application. In addition, the histopathological study revealed no alteration in the mice skin anatomy. Furthermore, the SMV-loaded NLCs and NLC-based gels were stable for 6 months at refrigerator conditions (4°C ± 2°C). Thus, the present research confirms that NLC-based gel can be a safe, efficacious, and novel alternative to treat BC.


Assuntos
Nanoestruturas , Neoplasias , Camundongos , Animais , Portadores de Fármacos/química , Nanoestruturas/química , Géis/química , Excipientes , Tensoativos , Lipídeos/química , Tamanho da Partícula
3.
Ageing Res Rev ; 98: 102322, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723753

RESUMO

Age-related macular degeneration (AMD) is a significant factor contributing to serious vision loss in adults above 50. The presence of posterior segment barriers serves as chief roadblocks in the delivery of drugs to treat AMD. The conventional treatment strategies use is limited due to its off-targeted distribution in the eye, shorter drug residence, poor penetration and bioavailability, fatal side effects, etc. The above-mentioned downside necessitates drug delivery using some cutting-edge technology including diverse nanoparticulate systems and microneedles (MNs) which provide the best therapeutic delivery alternative to treat AMD efficiently. Furthermore, cutting-edge treatment modalities including gene therapy and stem cell therapy can control AMD effectively by reducing the boundaries of conventional therapies with a single dose. This review discusses AMD overview, conventional therapies for AMD and their restrictions, repurposed therapeutics and their anti-AMD activity through different mechanisms, and diverse barriers in drug delivery for AMD. Various nanoparticulate-based approaches including polymeric NPs, lipidic NPs, exosomes, active targeted NPs, stimuli-sensitive NPs, cell membrane-coated NPs, inorganic NPs, and MNs are explained. Gene therapy, stem cell therapy, and therapies in clinical trials to treat AMD are also discussed. Further, bottlenecks of cutting-edge (nanoparticulate) technology-based drug delivery are briefed. In a nutshell, cutting-edge technology-based therapies can be an effective way to treat AMD.


Assuntos
Terapia Genética , Degeneração Macular , Humanos , Degeneração Macular/terapia , Terapia Genética/métodos , Terapia Genética/tendências , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Animais , Nanopartículas/uso terapêutico , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências
4.
Pathol Res Pract ; 255: 155157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320440

RESUMO

Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/efeitos adversos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise
5.
Pathol Res Pract ; 261: 155490, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39126977

RESUMO

Pyroptosis is an inflammatory programed cell death process that plays a crucial role in cancer therapeutic, while Gasdermin-D is a critical effector protein for pyroptosis execution. This review discusses the intricate interactions between Gasdermin-D and some non-coding RNAs (lncRNA, miRNA, siRNA) and their potential application in the regulation of pyroptosis as an anticancer therapy. Correspondingly, these ncRNAs significantly implicate in Gasdermin-D expression and function regarding the pyroptosis pathway. Functioning as competing endogenous RNAs (ceRNAs), these ncRNAs might regulate Gasdermin-D at the molecular level, underlying fatal cell death caused by cancer and tumor propagation. Therefore, these interactions appeal to therapeutics, offering new avenues for cancer treatment. It address this research gap by discussing the possible roles of ncRNAs as mediators of gasdermin-D regulation. It suggest therapeutic strategies based on the current research findings to ensure the interchange between the ideal pyroptosis and cancer cell death.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Proteínas de Ligação a Fosfato , Piroptose , RNA não Traduzido , Piroptose/fisiologia , Humanos , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Regulação Neoplásica da Expressão Gênica , Gasderminas
6.
Drug Deliv Transl Res ; 14(9): 2325-2344, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38758498

RESUMO

Skin cancer remains one of the most prominent types of cancer. Melanoma and non-melanoma skin cancer are commonly found together, with melanoma being the more deadly type. Skin cancer can be effectively treated with chemotherapy, which mostly uses small molecular medicines, phytoceuticals, and biomacromolecules. Topical delivery of these therapeutics is a non-invasive way that might be useful in effectively managing skin cancer. Different skin barriers, however, presented a major obstacle to topical cargo administration. Transferosomes have demonstrated significant potential in topical delivery by improving cargo penetration through the circumvention of diverse skin barriers. Additionally, the transferosome-based gel can prolong the residence of drug on the skin, lowering the frequency of doses and their associated side effects. However, the choice of appropriate transferosome compositions, such as phospholipids and edge activators, and fabrication technique are crucial for achieving improved entrapment efficiency, penetration, and regulated particle size. The present review discusses skin cancer overview, current treatment strategies for skin cancer and their drawbacks. Topical drug delivery against skin cancer is also covered, along with the difficulties associated with it and the importance of transferosomes in avoiding these difficulties. Additionally, a summary of transferosome compositions and fabrication methods is provided. Furthermore, topical delivery of small molecular drugs, phytoceuticals, and biomacromolecules using transferosomes and transferosomes-based gel in treating skin cancer is discussed. Thus, transferosomes can be a significant option in the topical delivery of drugs to manage skin cancer efficiently.


Assuntos
Antineoplásicos , Lipossomos , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Animais , Administração Cutânea , Sistemas de Liberação de Medicamentos , Absorção Cutânea
7.
Life Sci ; 352: 122859, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38925223

RESUMO

Lung cancer is among leading causes of death worldwide. The five-year survival rate of this disease is extremely low (17.8 %), mainly due to difficult early diagnosis and to the limited efficacy of currently available chemotherapeutics. This underlines the necessity to develop innovative therapies for lung cancer. In this context, drug repurposing represents a viable approach, as it reduces the turnaround time of drug development removing costs associated to safety testing of new molecular entities. Ribavirin, an antiviral molecule used to treat hepatitis C virus infections, is particularly promising as repurposed drug for cancer treatment, having shown therapeutic activity against glioblastoma, acute myeloid leukemia, and nasopharyngeal carcinoma. In the present study, we thoroughly investigated the in vitro anticancer activity of ribavirin against A549 human lung adenocarcinoma cells. From a functional standpoint, ribavirin significantly inhibits cancer hallmarks such as cell proliferation, migration, and colony formation. Mechanistically, ribavirin downregulates the expression of numerous proteins and genes regulating cell migration, proliferation, apoptosis, and cancer angiogenesis. The anticancer potential of ribavirin was further investigated in silico through gene ontology pathway enrichment and protein-protein interaction networks, identifying five putative molecular interactors of ribavirin (Erb-B2 Receptor Tyrosine Kinase 4 (Erb-B4); KRAS; Intercellular Adhesion Molecule 1 (ICAM-1); amphiregulin (AREG); and neuregulin-1 (NRG1)). These interactions were characterized via molecular docking and molecular dynamic simulations. The results of this study highlight the potential of ribavirin as a repurposed chemotherapy against lung cancer, warranting further studies to ascertain the in vivo anticancer activity of this molecule.


Assuntos
Antineoplásicos , Proliferação de Células , Reposicionamento de Medicamentos , Neoplasias Pulmonares , Ribavirina , Humanos , Reposicionamento de Medicamentos/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Ribavirina/farmacologia , Células A549 , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Biologia Computacional/métodos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo
8.
Drug Deliv Transl Res ; 14(10): 1-17, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38789909

RESUMO

Fisetin (FS) is a flavonoid that possesses antioxidant and anti-inflammatory properties against ulcerative colitis. FS shows poor dissolution rate and permeability. An attempt has been made to develop colon-targeted solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of FS. Initially, liquid (L) SNEDDS were prepared by loading FS into isotropic mixture of L-SNEDDS was prepared using Labrafil M 1944 CS, Transcutol P, and Tween 80. These L-SNEDDS were further converted into solid (S) SNEDDS by mixing the isotropic mixture with 1:1:1 ratio of guar gum (GG), xanthan gum (XG) and pectin (PC) [GG:XG:PC (1:1:1)]. Aerosil-200 (A-200) was added to enhance their flow characteristics. Further, they were converted into spheroids by extrusion-spheronization technique. The solid-state characterization of S-SNEDDS was done by SEM, DSC, and PXRD, which revealed that the crystalline form of FS was converted into the amorphous form. In the dissolution study, S-SNEDDS spheroids [GG:XG:PC (1:1:1)] exhibited less than 20% drug release within the first 5 h, followed by rapid release of the drug between the 5th and 10th h, indicating its release at colonic site. The site-specific delivery of FS to colon via FS-S-SNEDDS spheroids was confirmed by conducting pharmacokinetic studies on rats. Wherein, results showed delay in absorption of FS loaded in spheroids up to 5 h and achievement of Cmax at 7h, whereas L-SNEDDS showed rapid absorption of FS. Furthermore, FS-L-SNEDDS and FS-S-SNEDDS spheroids [GG:XG:PC (1:1:1)] increased oral bioavailability of FS by 6.86-fold and 4.44-fold, respectively, as compared to unprocessed FS.


Assuntos
Disponibilidade Biológica , Colo , Emulsões , Flavonoides , Flavonóis , Galactanos , Pectinas , Polissacarídeos Bacterianos , Flavonóis/farmacocinética , Flavonóis/administração & dosagem , Flavonóis/química , Animais , Colo/metabolismo , Flavonoides/farmacocinética , Flavonoides/administração & dosagem , Flavonoides/química , Masculino , Administração Oral , Galactanos/química , Galactanos/farmacocinética , Galactanos/administração & dosagem , Pectinas/química , Pectinas/farmacocinética , Pectinas/administração & dosagem , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacocinética , Polissacarídeos Bacterianos/administração & dosagem , Gomas Vegetais/química , Gomas Vegetais/farmacocinética , Gomas Vegetais/administração & dosagem , Mananas/química , Mananas/farmacocinética , Mananas/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanopartículas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Liberação Controlada de Fármacos , Solubilidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-39126576

RESUMO

Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability. This advantage of NDDS can help to deliver pure drugs to the target site. However, the formulation of nanoparticles is a complex process that requires optimization to ensure product quality and efficacy. Quality by Design (QbD) is a systemic approach that has been implemented in the pharmaceutical industry to improve the quality and reliability of drug products. QbD involves the optimization of different parameters like zeta potential (ZP), particle size (PS), entrapment efficiency (EE), polydispersity index (PDI), and drug release using statistical experimental design. The present article discussed the detailed role of QbD in optimizing nanoformulations and their advantages, advancement, and applications from the industrial perspective. Various case studies of QbD in the optimization of nanoformulations are also discussed.

10.
J Control Release ; 353: 1150-1170, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566843

RESUMO

Cancer ranks as the second foremost cause of death in various corners of the globe. The clinical uses of assorted anticancer therapeutics have been limited owing to the poor physicochemical attributes, pharmacokinetic performance, and lethal toxicities. Various sorts of co-crystals or nano co-crystals or co-crystals-laden nanocarriers have presented great promise in targeting cancer via improved physicochemical attributes, pharmacokinetic performance, and reduced toxicities. These systems have also demonstrated the controlled cargo release and passive targeting via enhanced permeation and retention (EPR) effect. In addition, regional delivery of co-crystals via inhalation and transdermal route displayed remarkable potential in targeting lung and skin cancer effectively. However, more research is required on the use of co-crystals in cancer and their commercialization. The present review mainly emphasizes co-crystals as emerging avenues in the treatment of various cancers by modulating the physicochemical and pharmacokinetic attributes of approved anticancer therapeutics. The worth of co-crystals in cancer treatment, computational paths in the co-crystals screening, diverse experimental techniques of co-crystals fabrication, and sorts of co-crystals and their noteworthy applications in targeting cancer are also discussed. Besides, the game changer approaches like nano co-crystals and co-crystals-laden nanocarriers, and co-crystals in regional delivery in cancer are also explained with reported case studies. Furthermore, regulatory directives for pharmaceutical co-crystals and their scale-up, and challenges are also highlighted with concluding remarks and future initiatives. In essence, co-crystals and nano co-crystals emerge to be a promising strategy in overwhelming cancers through improving anticancer efficacy, safety, patient compliance, and reducing the cost.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Cutâneas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA