Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 612(7940): 459-464, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418403

RESUMO

High pressure represents extreme environments and provides opportunities for materials discovery1-8. Thermal transport under high hydrostatic pressure has been investigated for more than 100 years and all measurements of crystals so far have indicated a monotonically increasing lattice thermal conductivity. Here we report in situ thermal transport measurements in the newly discovered semiconductor crystal boron arsenide, and observe an anomalous pressure dependence of the thermal conductivity. We use ultrafast optics, Raman spectroscopy and inelastic X-ray scattering measurements to examine the phonon bandstructure evolution of the optical and acoustic branches, as well as thermal conductivity under varied temperatures and pressures up to 32 gigapascals. Using atomistic theory, we attribute the anomalous high-pressure behaviour to competitive heat conduction channels from interactive high-order anharmonicity physics inherent to the unique phonon bandstructure. Our study verifies ab initio theory calculations and we show that the phonon dynamics-resulting from competing three-phonon and four-phonon scattering processes-are beyond those expected from classical models and seen in common materials. This work uses high-pressure spectroscopy combined with atomistic theory as a powerful approach to probe complex phonon physics and provide fundamental insights for understanding microscopic energy transport in materials of extreme properties.

2.
Nature ; 579(7797): 67-72, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094661

RESUMO

The Hall-Petch relationship, according to which the strength of a metal increases as the grain size decreases, has been reported to break down at a critical grain size of around 10 to 15 nanometres1,2. As the grain size decreases beyond this point, the dominant mechanism of deformation switches from a dislocation-mediated process to grain boundary sliding, leading to material softening. In one previous approach, stabilization of grain boundaries through relaxation and molybdenum segregation was used to prevent this softening effect in nickel-molybdenum alloys with grain sizes below 10 nanometres3. Here we track in situ the yield stress and deformation texturing of pure nickel samples of various average grain sizes using a diamond anvil cell coupled with radial X-ray diffraction. Our high-pressure experiments reveal continuous strengthening in samples with grain sizes from 200 nanometres down to 3 nanometres, with the strengthening enhanced (rather than reduced) at grain sizes smaller than 20 nanometres. We achieve a yield strength of approximately 4.2 gigapascals in our 3-nanometre-grain-size samples, ten times stronger than that of a commercial nickel material. A maximum flow stress of 10.2 gigapascals is obtained in nickel of grain size 3 nanometres for the pressure range studied here. We see similar patterns of compression strengthening in gold and palladium samples down to the smallest grain sizes. Simulations and transmission electron microscopy reveal that the high strength observed in nickel of grain size 3 nanometres is caused by the superposition of strengthening mechanisms: both partial and full dislocation hardening plus suppression of grain boundary plasticity. These insights contribute to the ongoing search for ultrastrong metals via materials engineering.

3.
Nano Lett ; 23(1): 132-139, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36577713

RESUMO

The ability to gradually modify the atomic structures of nanomaterials and directly identify such structural variation is important in nanoscience research. Here, we present the first example of a high-pressure single-crystal X-ray diffraction analysis of atomically precise metal nanoclusters. The pressure-dependent, subangstrom structural evolution of an ultrasmall gold nanoparticle, Au25S18, has been directly identified. We found that a 0.1 Å decrease of the Au-Au bond length could induce a blue-shift of 30 nm in the photoluminescence spectra of gold nanoclusters. From theoretical calculations, the origins of the blue-shift and enhanced photoluminescence under pressure are investigated, which are ascribed to molecular orbital symmetry and conformational locking, respectively. The combination of the high-pressure in situ X-ray results with both theoretical and experimental optical spectra provides a direct and generalizable avenue to unveil the underlying structure-property relations for nanoclusters and nanoparticles which cannot be obtained through traditional physical chemistry measurements.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Cristalografia por Raios X
4.
Small ; 19(33): e2300659, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072896

RESUMO

Controlling diamond structures with nanometer precision is fundamentally challenging owing to their extreme and far-from-equilibrium synthetic conditions. State-of-the-art techniques, including detonation, chemical vapor deposition, mechanical grinding, and high-pressure-high-temperature synthesis, yield nanodiamond particles with a broad distribution of sizes. Despite many efforts, the direct synthesis of nanodiamonds with precisely controlled diameters remains elusive. Here the geochemistry-inspired synthesis of sub-5 nm nanodiamonds with sub-nanometer size deviation is described. High-pressure-high-temperature treatment of uniform iron carbide nanoparticles embedded in iron oxide matrices yields nanodiamonds with tunable diameters down to 2.13 and 0.22 nm standard deviation. A self-limiting, redox-driven, and diffusion-controlled solid-state reaction mechanism is proposed and supported by in situ X-ray diffraction, ex situ characterizations, and computational modeling. This work provides a unique mechanism for the precise control of nanostructured diamonds under extreme conditions and paves the road for the full realization of their potential in emerging technologies.

5.
Angew Chem Int Ed Engl ; 61(50): e202213249, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379010

RESUMO

Graphitic deposits anti-segregate into Ni0 nanoparticles to provide restored CH4 adsorption sites and near-surface/dissolved C atoms, which migrate to the Ni0 /ZrO2 interface and induce local Zrx Cy formation. The resulting oxygen-deficient carbidic phase boundary sites assist in the kinetically enhanced CO2 activation toward CO(g). This interface carbide mechanism allows for enhanced spillover of carbon to the ZrO2 support, and represents an alternative catalyst regeneration pathway with respect to the reverse oxygen spillover on Ni-CeZrx Oy catalysts. It is therefore rather likely on supports with limited oxygen storage/exchange kinetics but significant carbothermal reducibility.

6.
Nano Lett ; 20(10): 7767-7773, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33016704

RESUMO

Nanocrystals can exist in multiply twinned structures like icosahedron or single crystalline structures like cuboctahedron. Transformations between these structures can proceed through diffusion or displacive motion. Experimental studies on nanocrystal structural transformations have focused on high-temperature diffusion-mediated processes. Limited experimental evidence of displacive motion exists. We report structural transformation of 6 nm Au nanocrystals under nonhydrostatic pressure of 7.7 GPa in a diamond anvil cell that is driven by displacive motion. X-ray diffraction and transmission electron microscopy were used to detect the structural transformation from multiply twinned to single crystalline. Single crystalline nanocrystals were recovered after unloading, then quickly reverted to the multiply twinned state after dispersion in toluene. The dynamics of recovery was captured using TEM which showed surface recrystallization and rapid twin boundary motion. Molecular dynamics simulations showed that twin boundaries are unstable due to defects nucleated from the interior of the nanocrystal.

7.
Hum Brain Mapp ; 41(6): 1416-1434, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31789477

RESUMO

We investigated the brain atrophy distribution pattern and rate of regional atrophy change in Parkinson's disease (PD) in association with the cognitive status to identify the morphological characteristics of conversion to mild cognitive impairment (MCI) and dementia (PDD). T1-weighted longitudinal 3T MRI data (up to four follow-up assessments) from neuropsychologically well-characterized advanced PD patients (n = 172, 8.9 years disease duration) and healthy elderly controls (n = 85) enrolled in the LANDSCAPE study were longitudinally analyzed using a linear mixed effect model and atlas-based volumetry and cortical thickness measures. At baseline, PD patients presented with cerebral atrophy and cortical thinning including striatum, temporoparietal regions, and primary/premotor cortex. The atrophy was already observed in "cognitively normal" PD patients (PD-N) and was considerably more pronounced in cognitively impaired PD patients. Linear mixed effect modeling revealed almost similar rates of atrophy change in PD and controls. The group comparison at baseline between those PD-N whose cognitive performance remained stable (n = 42) and those PD-N patients who converted to MCI/PDD ("converter" cPD-N, n = 26) indicated suggested cortical thinning in the anterior cingulate cortex in cPD-N patients which was correlated with cognitive performance. Our results suggest that cortical brain atrophy has been already expanded in advanced PD patients without overt cognitive deficits while atrophy progression in late disease did not differ from "normal" aging regardless of the cognitive status. It appears that cortical atrophy begins early and progresses already in the initial disease stages emphasizing the need for therapeutic interventions already at disease onset.


Assuntos
Cognição , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/psicologia , Idoso , Atlas como Assunto , Atrofia , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Demência/patologia , Demência/psicologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Modelos Lineares , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estudos Prospectivos
8.
Phys Rev Lett ; 124(3): 031101, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031849

RESUMO

We introduce the galaxy intensity mapping cross-correlation estimator (GIMCO), which is a new tomographic estimator for the gravitational lensing potential, based on a combination of intensity mapping (IM) and galaxy number counts. The estimator can be written schematically as IM(z_{f})×galaxy(z_{b})-galaxy(z_{f})×IM(z_{b}) for a pair of distinct redshifts (z_{f},z_{b}); this combination allows to greatly reduce the contamination by density-density correlations, thus isolating the lensing signal. As an estimator constructed only from cross-correlations, it is additionally less susceptible to systematic effects. We show that the new estimator strongly suppresses cosmic variance and consequently improves the signal-to-noise ratio (SNR) for the detection of lensing, especially on linear scales and intermediate redshifts. For cosmic variance dominated surveys, the SNR of our estimator is a factor of 30 larger than the SNR obtained from the correlation of galaxy number counts only. Shot noise and interferometer noise reduce the SNR. For the specific example of the dark energy survey (DES) cross-correlated with the hydrogen intensity mapping and real time analysis experiment (HIRAX), the SNR is around four, whereas for Euclid cross-correlated with HIRAX it reaches 52. This corresponds to an improvement of a factor of 4-5 compared to the SNR from DES alone. For Euclid cross-correlated with HIRAX the improvement with respect to Euclid alone strongly depends on the redshift. We find that the improvement is particularly important for redshifts below 1.6, where it reaches a factor of 5. This makes our estimator especially valuable to test dark energy and modified gravity, that are expected to leave an impact at low and intermediate redshifts.

9.
Phys Rev Lett ; 124(10): 106104, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216385

RESUMO

As circuitry approaches single nanometer length scales, it has become important to predict the stability of single nanometer-sized metals. The behavior of metals at larger scales can be predicted based on the behavior of dislocations, but it is unclear if dislocations can form and be sustained at single nanometer dimensions. Here, we report the formation of dislocations within individual 3.9 nm Au nanocrystals under nonhydrostatic pressure in a diamond anvil cell. We used a combination of x-ray diffraction, optical absorbance spectroscopy, and molecular dynamics simulation to characterize the defects that are formed, which were found to be surface-nucleated partial dislocations. These results indicate that dislocations are still active at single nanometer length scales and can lead to permanent plasticity.

10.
Phys Rev Lett ; 120(13): 131101, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694183

RESUMO

The coincident detection of gravitational waves (GW) and a gamma-ray burst from a merger of neutron stars has placed an extremely stringent bound on the speed of GWs. We showed previously that the presence of gravitational slip (η) in cosmology is intimately tied to modifications of GW propagation. This new constraint implies that the only remaining viable source of gravitational slip is a conformal coupling to gravity in scalar-tensor theories, while viable vector-tensor theories cannot now generate gravitational slip at all. We discuss structure formation in the remaining viable models, demonstrating that (i) the dark-matter growth rate must now be at least as fast as in general relativity (GR), with the possible exception of that beyond the Horndeski model, and (ii) if there is any scale dependence at all in the slip parameter, it is such that it takes the GR value at large scales. We show a consistency relation that must be violated if gravity is modified.

11.
J Chem Phys ; 149(3): 034501, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037252

RESUMO

Ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. A revised RT isothermal phase diagram is discussed based on the findings of this study.

12.
Living Rev Relativ ; 21(1): 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674941

RESUMO

Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

13.
Nano Lett ; 17(11): 6752-6758, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29072837

RESUMO

A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH2, pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N2 molecules (kinetic diameter, 0.364 nm) from smaller CO2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO2 separation performance by simultaneously increasing CO2 permeability (CO2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO2/N2 selectivity (CO2/N2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using dual-channel molecular sieving core/shell porous crystals in hybrid membranes thus provides a promising means for CO2 capture from flue gas.

14.
Proc Natl Acad Sci U S A ; 111(52): 18484-9, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512521

RESUMO

The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

15.
Inorg Chem ; 55(20): 10793-10799, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27709926

RESUMO

The role of carbon dioxide, CO2, as oxidizing agent at high pressures and temperatures is evaluated by studying its chemical reactivity with three transition metals: Au, Pt, and Re. We report systematic X-ray diffraction measurements up to 48 GPa and 2400 K using synchrotron radiation and laser-heating diamond-anvil cells. No evidence of reaction was found in Au and Pt samples in this pressure-temperature range. In the Re + CO2 system, however, a strongly-driven redox reaction occurs at P > 8 GPa and T > 1500 K, and orthorhombic ß-ReO2 is formed. This rhenium oxide phase is stable at least up to 48 GPa and 2400 K and was recovered at ambient conditions. Raman spectroscopy data confirm graphite as a reaction product. Ab-initio total-energy structural and compressibility data of the ß-ReO2 phase shows an excellent agreement with experiments, altogether accurately confirming CO2 reduction P-T conditions in the presence of rhenium metal and the ß-ReO2 equation of state.

16.
Phys Rev Lett ; 114(5): 051302, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25699430

RESUMO

The large-scale homogeneity and isotropy of the Universe is generally thought to imply a well-defined background cosmological model. It may not. Smoothing over structure adds in an extra contribution, transferring power from small scales up to large. Second-order perturbation theory implies that the effect is small, but suggests that formally the perturbation series may not converge. The amplitude of the effect is actually determined by the ratio of the Hubble scales at matter-radiation equality and today-which are entirely unrelated. This implies that a universe with significantly lower temperature today could have significant backreaction from more power on small scales, and so provides the ideal testing ground for understanding backreaction. We investigate this using two different N-body numerical simulations-a 3D Newtonian and a 1D simulation which includes all relevant relativistic effects. We show that while perturbation theory predicts an increasing backreaction as more initial small-scale power is added, in fact the virialization of structure saturates the backreaction effect at the same level independently of the equality scale. This implies that backreaction is a small effect independently of initial conditions. Nevertheless, it may still contribute at the percent level to certain cosmological observables and therefore it cannot be neglected in precision cosmology.

17.
Phys Rev Lett ; 113(19): 191101, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415893

RESUMO

We make precise the heretofore ambiguous statement that anisotropic stress is a sign of a modification of gravity. We show that in cosmological solutions of very general classes of models extending gravity-all scalar-tensor theories (Horndeski), Einstein-aether models, and bimetric massive gravity-a direct correspondence exists between perfect fluids apparently carrying anisotropic stress and a modification in the propagation of gravitational waves. Since the anisotropic stress can be measured in a model-independent manner, a comparison of the behavior of gravitational waves from cosmological sources with large-scale-structure formation could, in principle, lead to new constraints on the theory of gravity.

18.
Phys Rev Lett ; 112(17): 171301, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836231

RESUMO

We show that the B-mode polarization signal detected at low multipoles by BICEP2 cannot be entirely due to topological defects. This would be incompatible with the high-multipole B-mode polarization data and also with existing temperature anisotropy data. Adding cosmic strings to a model with tensors, we find that B modes on their own provide a comparable limit on the defects to that already coming from Planck satellite temperature data. We note that strings at this limit give a modest improvement to the best fit of the B-mode data, at a somewhat lower tensor-to-scalar ratio of r ≃ 0.15.

19.
Mater Horiz ; 11(10): 2382-2387, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38564229

RESUMO

Cerium oxide is a low-value byproduct of rare-earth mining yet constitutes the largest fraction of the rare earth elements. The reduction of cerium oxide by liquid aluminum is proposed as an energy- and cost-efficient route to produce high-strength Al-Ce alloys. This work investigated the mechanism of a multi-step reduction reaction to facilitate the industrial adaptation of the process. Differential scanning calorimetry in combination with time-resolved synchrotron diffraction data uncovered the rate-limiting reaction step as the origin of the reported temperature dependence of reduction efficiency. This is the first in situ study of a metallothermic reaction mechanism and will serve as guidance for cost- and energy efficient industrial process control.

20.
Sci Adv ; 10(27): eadp3309, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959320

RESUMO

The success of solid-state synthesis often hinges on the first intermediate phase that forms, which determines the remaining driving force to produce the desired target material. Recent work suggests that when reaction energies are large, thermodynamics primarily dictates the initial product formed, regardless of reactant stoichiometry. Here, we validate this principle and quantify its constraints by performing in situ characterization on 37 pairs of reactants. These experiments reveal a threshold for thermodynamic control in solid-state reactions, whereby initial product formation can be predicted when its driving force exceeds that of all other competing phases by ≥60 milli-electron volt per atom. In contrast, when multiple phases have a comparable driving force to form, the initial product is more often determined by kinetic factors. Analysis of the Materials Project data shows that 15% of possible reactions fall within the regime of thermodynamic control, highlighting the opportunity to predict synthesis pathways from first principles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA