Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(24): 6123-6128, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29793938

RESUMO

This study presents a unique Mg-based alloy composition in the Mg-Zn-Yb system which exhibits bulk metallic glass, metastable icosahedral quasicrystals (iQCs), and crystalline approximant phases in the as-cast condition. Microscopy revealed a smooth gradual transition from glass to QC. We also report the complete melting of a metastable eutectic phase mixture (including a QC phase), generated via suppression of the metastable-to-stable phase transition at high heating rates using fast differential scanning calorimetry (FDSC). The melting temperature and enthalpy of fusion of this phase mixture could be measured directly, which unambiguously proves its metastability in any temperature range. The kinetic pathway from liquid state to stable solid state (an approximant phase) minimizes the free-energy barrier for nucleation through an intermediate state (metastable QC phase) because of its low solid-liquid interfacial energy. At high undercooling of the liquid, where diffusion is limited, another approximant phase with near-liquid composition forms just above the glass-transition temperature. These experimental results shed light on the competition between metastable and stable crystals, and on glass formation via system frustration associated with the presence of several free-energy minima.

2.
Adv Sci (Weinh) ; 7(12): 1903544, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596111

RESUMO

Crystals do eventually melt if they are heated to their characteristic melting point. However, this is practically only the case for high-temperature stable crystals, whereas low-temperature metastable crystals generally transform, before melting, into a more stable solid during heating. Here, it is illustrated that low-temperature crystals can, however, be melted via fast differential scanning calorimetry (FDSC), even in metallic systems where nucleation and growth kinetics are rapid. For a Au-Si eutectic alloy, various metastable and stable solid states, i.e., (Au-α), (Au-ß), γ, and (Au-Si), which form under well-controlled conditions and melt at high heating rates by preventing the metastable-to-stable solid phase transition, are isolated. It is demonstrated that Au81.4Si18.6 can fully melt at various temperatures, i.e., 294 °C, 312 °C, 352 °C, and 363 °C, with differing melting enthalpies ranging from 6.52 to 9.83 kJ mol-1. The melting and crystallization paths of the metastable solids are determined by constructing an energy-temperature diagram. This approach advances the general understanding of nucleation in metallic and other systems, and is expected to contribute to the detailed understanding of thermophysical phenomena that occur at spatially reduced dimensions and/or short time scales, for example in thin-film deposition, nanomaterials production, or additive manufacturing.

3.
Nat Nanotechnol ; 15(10): 875-882, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747740

RESUMO

Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 1010. We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain-machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.

4.
Acta Biomater ; 98: 36-49, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132536

RESUMO

WE43, a magnesium alloy containing yttrium and neodymium as main alloying elements, has become a well-established bioresorbable implant material. Implants made of WE43 are often fabricated by powder extrusion and subsequent machining, but for more complex geometries laser powder bed fusion (LPBF) appears to be a promising alternative. However, the extremely high cooling rates and subsequent heat treatment after solidification of the melt pool involved in this process induce a drastic change in microstructure, which governs mechanical properties and degradation behaviour in a way that is still unclear. In this study we investigated the changes in the microstructure of WE43 induced by LPBF in comparison to that of cast WE43. We did this mainly by electron microscopy imaging, and chemical mapping based on energy-dispersive X-ray spectroscopy in conjunction with electron diffraction for the identification of the various phases. We identified different types of microstructure: an equiaxed grain zone in the center of the laser-induced melt pool, and a lamellar zone and a partially melted zone at its border. The lamellar zone presents dendritic lamellae lying on the Mg basal plane and separated by aligned Nd-rich nanometric intermetallic phases. They appear as globular particles made of Mg3Nd and as platelets made of Mg41Nd5 occurring on Mg prismatic planes. Yttrium is found in solid solution and in oxide particles stemming from the powder particles' shell. Due to the heat influence on the lamellar zone during subsequent laser passes, a strong texture developed in the bulk material after substantial grain growth. STATEMENT OF SIGNIFICANCE: Additively manufactured magnesium alloys have the potential of providing a major breakthrough in bone-reconstruction surgery by serving as biodegradable porous scaffold material. This study is the first to report in detail on the microstructure development of the established magnesium alloy WE43 fabricated by the additive manufacturing process of Laser Powder Bed Fusion (LPBF). It presents unique microstructural features which originate from the laser-melting process. An in situ transmission electron microscopy heating experiment further demonstrates the development of two distinct intermetallic phases in additively manufactured WE43 alloys. While one forms already during solidification, the other precipitates due to the ongoing heat treatment during LPBF processing.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Lasers , Magnésio/química , Manufaturas , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA