Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Cell ; 178(1): 242-260.e29, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31155234

RESUMO

Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.


Assuntos
Miocárdio/metabolismo , Biossíntese de Proteínas , Adolescente , Adulto , Idoso , Animais , Códon/genética , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ribossomos/genética , Ribossomos/metabolismo , Adulto Jovem
2.
Cell Mol Life Sci ; 80(9): 265, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615749

RESUMO

Transient receptor potential cation channel-6 (TRPC6) gene mutations cause familial focal segmental glomerulosclerosis (FSGS), which is inherited as an autosomal dominant disease. In patients with TRPC6-related FSGS, all mutations map to the N- or C-terminal TRPC6 protein domains. Thus far, the majority of TRPC6 mutations are missense resulting in increased or decreased calcium influx; however, the fundamental molecular mechanisms causing cell injury and kidney pathology are unclear. We report a novel heterozygous TRPC6 mutation (V691Kfs*) in a large kindred with no signs of FSGS despite a largely truncated TRPC6 protein. We studied the molecular effects of V691Kfs* TRPC6 mutant using the tridimensional cryo-EM structure of the tetrameric TRPC6 protein. The results indicated that V691 is localized at the pore-forming transmembrane region affecting the ion conduction pathway, and predicted that V691Kfs* causes closure of the ion-conducting pathway leading to channel inactivation. We assessed the impact of V691Kfs* and two previously reported TRPC6 disease mutants (P112Q and G757D) on calcium influx in cells. Our data show that the V691Kfs* fully inactivated the TRCP6 channel-specific calcium influx consistent with a complete loss-of-function phenotype. Furthermore, the V691Kfs* truncation exerted a dominant negative effect on the full-length TRPC6 proteins. In conclusion, the V691Kfs* non-functional truncated TRPC6 is not sufficient to cause FSGS. Our data corroborate recently characterized TRPC6 loss-of-function and gain-of-function mutants suggesting that one defective TRPC6 gene copy is not sufficient to cause FSGS. We underscore the importance of increased rather than reduced calcium influx through TRPC6 for podocyte cell death.


Assuntos
Glomerulosclerose Segmentar e Focal , Humanos , Glomerulosclerose Segmentar e Focal/genética , Canal de Cátion TRPC6/genética , Cálcio , Mutação com Perda de Função , Mutação/genética
3.
Dermatology ; 238(2): 236-243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34077928

RESUMO

BACKGROUND: Hidradenitis suppurativa/acne inversa (HS) is a chronic, recurrent inflammatory skin disease. Its pivotal pathogenetic event is believed to be the occlusion of the hair follicle generating a perifollicular lympho-histiocytic inflammation. However, knowledge of the exact HS pathogenesis requires further research. OBJECTIVE: To develop a human HS model applicable in preclinical research which could help to understand the pathophysiology of HS and to determine the action of therapeutic candidates. METHODS: The 3D-SeboSkin technology was applied to maintain explants of involved and uninvolved skin of HS patients ex vivo for 3 days. Detection of differential expression of previously detected HS biomarkers was performed by immunohistochemistry in a group of female patients (n = 9, mean age 37.2 ± 8.4 years). RESULTS: The application of the 3D-SeboSkin model preserved the structural integrity of lesional and perilesional HS skin ex vivo, as previously described for healthy skin. Moreover, the HS 3D-SeboSkin setting maintained the differential expression and pattern of several HS biomarkers (S100A9, KRT16, SERPINB3) in epidermal and dermal tissue and the appendages. CONCLUSION: We have validated HS 3D-SeboSkin as a reproducible, human model, which is appropriate for preclinical lesional and perilesional HS skin studies ex vivo.


Assuntos
Dermatite , Hidradenite Supurativa , Adulto , Dermatite/patologia , Epiderme/metabolismo , Feminino , Hidradenite Supurativa/diagnóstico , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Pele/patologia
4.
Cancer Immunol Immunother ; 69(7): 1307-1313, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32193699

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) are rare aggressive sarcomas with poor prognosis. More than half of MPNSTs develop from benign precursor tumors associated with neurofibromatosis type 1 (NF1) which is a tumor suppressor gene disorder. Early detection of malignant transformation in NF1 patients is pivotal to improving survival. The primary aim of this study was to evaluate the role of immuno-modulators as candidate biomarkers of malignant transformation in NF1 patients with plexiform neurofibromas as well as predictors of response to immunotherapeutic approaches. METHODS: Sera from a total of 125 NF1 patients with quantified internal tumor load were included, and 25 of them had MPNSTs. A total of six immuno-modulatory factors (IGFBP-1, PD-L1, IFN-α, GM-CSF, PGE-2, and AXL) were measured in these sera using respective ELISA. RESULTS: NF1 patients with MPNSTs had significantly elevated PD-L1 levels in their sera compared to NF1 patients without MPNSTs. By contrast, AXL concentrations were significantly lower in sera of NF1-MPNST patients. IGFBP-1 and PGE2 serum levels did not differ between the two patient groups. IFN-α and GM-CSF were below the detectable level in most samples. CONCLUSION: The immuno-modulator PD-L1 is upregulated in MPNST patients and therefore may provide as a potential biomarker of malignant transformation in patients with NF1 and as a response predictor for immunotherapeutic approaches.


Assuntos
Antígeno B7-H1/sangue , Biomarcadores Tumorais/sangue , Neurofibrossarcoma/sangue , Neurofibrossarcoma/patologia , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Prognóstico , Carga Tumoral
5.
Stem Cells ; 37(9): 1130-1135, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021472

RESUMO

This report summarizes the recent activity of the International Stem Cell Banking Initiative held at Harvard Stem Cell Institute, Boston, MA, USA, on June 18, 2017. In this meeting, we aimed to find consensus on ongoing issues of quality control (QC), safety, and efficacy of human pluripotent stem cell banks and their derivative cell therapy products for the global harmonization. In particular, assays for the QC testing such as pluripotency assays test and general QC testing criteria were intensively discussed. Moreover, the recent activities of global stem cell banking centers and the regulatory bodies were briefly summarized to provide an overview on global developments and issues. Stem Cells 2019;37:1130-1135.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco/citologia , Bancos de Tecidos/normas , Boston , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Cooperação Internacional , Controle de Qualidade
6.
Cell Mol Life Sci ; 76(1): 179-192, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30310934

RESUMO

Human pluripotent stem cells (hPSCs) provide a source for the generation of defined kidney cells and renal organoids applicable in regenerative medicine, disease modeling, and drug screening. These applications require the provision of hPSC-derived renal cells by reproducible, scalable, and efficient methods. We established a chemically defined protocol by application of Activin A, BMP4, and Retinoic acid followed by GDNF, which steered hPSCs to the renal lineage and resulted in populations of SIX2+/CITED1+ metanephric mesenchyme- (MM) and of HOXB7+/GRHL2+ ureteric bud (UB)-like cells already by 6 days. Transcriptome analysis corroborated that the PSC-derived cell types at day 8 resemble their renal vesicle and ureteric epithelial counterpart in vivo, forming tubular and glomerular renal cells 6 days later. We demonstrate that starting from hPSCs, our in vitro protocol generates a pool of nephrogenic progenitors at the renal vesicle stage, which can be further directed into specialized nephronal cell types including mesangial-, proximal tubular-, distal tubular, collecting duct epithelial cells, and podocyte precursors after 14 days. This simple and rapid method to produce renal cells from a common precursor pool in 2D culture provides the basis for scaled-up production of tailored renal cell types, which are applicable for drug testing or cell-based regenerative therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Néfrons/citologia , Células-Tronco Pluripotentes/citologia , Ativinas/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Néfrons/efeitos dos fármacos , Néfrons/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/efeitos dos fármacos , Tretinoína/farmacologia
7.
Stem Cells ; 36(10): 1552-1566, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004605

RESUMO

Although autologous induced pluripotent stem cells (iPSCs) can potentially be useful for treating patients without immune rejection, in reality it will be extremely expensive and labor-intensive to make iPSCs to realize personalized medicine. An alternative approach is to make use of human leukocyte antigen (HLA) haplotype homozygous donors to provide HLA matched iPSC products to significant numbers of patients. To establish a haplobank of iPSCs, we repurposed the cord blood bank by screening ∼4,200 high resolution HLA typed cord blood samples, and selected those homozygous for the 10 most frequent HLA-A,-B,-DRB1 haplotypes in the Korean population. Following the generation of 10 iPSC lines, we conducted a comprehensive characterization, including morphology, expression of pluripotent markers and cell surface antigens, three-germ layer formation, vector clearance, mycoplasma/microbiological/viral contamination, endotoxin, and short tandem repeat (STR) assays. Various genomic analyses using microarray and comparative genomic hybridization (aCGH)-based single nucleotide polymorphism (SNP) and copy number variation (CNV) were also conducted. These 10 HLA-homozygous iPSC lines match 41.07% of the Korean population. Comparative analysis of HLA population data shows that they are also of use in other Asian populations, such as Japan, with some limited utility in ethnically diverse populations, such as the UK. Taken together, the generation of the 10 most frequent Korean HLA-homozygous iPSC lines serves as a useful pointer for the development of optimal methods for iPSC generation and quality control and indicates the benefits and limitations of collaborative HLA driven selection of donors for future stocking of worldwide iPSC haplobanks. Stem Cells 2018;36:1552-1566.


Assuntos
Armazenamento de Sangue/métodos , Instabilidade Genômica/genética , Antígenos HLA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Haplótipos , Antígenos de Histocompatibilidade Classe II , Humanos
8.
Nucleic Acids Res ; 44(D1): D757-63, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26400179

RESUMO

The human pluripotent stem cell registry (hPSCreg), accessible at http://hpscreg.eu, is a public registry and data portal for human embryonic and induced pluripotent stem cell lines (hESC and hiPSC). Since their first isolation the number of hESC lines has steadily increased to over 3000 and new iPSC lines are generated in a rapidly growing number of laboratories as a result of their potentially broad applicability in biomedicine and drug testing. Many of these lines are deposited in stem cell banks, which are globally established to store tens of thousands of lines from healthy and diseased donors. The Registry provides comprehensive and standardized biological and legal information as well as tools to search and compare information from multiple hPSC sources and hence addresses a translational research need. To facilitate unambiguous identification over different resources, hPSCreg automatically creates a unique standardized name for each cell line registered. In addition to biological information, hPSCreg stores extensive data about ethical standards regarding cell sourcing and conditions for application and privacy protection. hPSCreg is the first global registry that holds both, manually validated scientific and ethical information on hPSC lines, and provides access by means of a user-friendly, mobile-ready web application.


Assuntos
Linhagem Celular , Células-Tronco Embrionárias , Células-Tronco Pluripotentes Induzidas , Sistema de Registros , Humanos , Internet
9.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321994

RESUMO

Bioprinting is a novel technology that may help to overcome limitations associated with two-dimensional (2D) cell cultures and animal experiments, as it allows the production of three-dimensional (3D) tissue models composed of human cells. The present study describes the optimization of a bioink composed of alginate, gelatin and human extracellular matrix (hECM) to print human HepaRG liver cells with a pneumatic extrusion printer. The resulting tissue model was tested for its suitability for the study of transduction by an adeno-associated virus (AAV) vector and infection with human adenovirus 5 (hAdV5). We found supplementation of the basic alginate/gelatin bioink with 0.5 and 1 mg/mL hECM provides desirable properties for the printing process, the stability of the printed constructs, and the viability and metabolic functions of the printed HepaRG cells. The tissue models were efficiently transduced by AAV vectors of serotype 6, which successfully silenced an endogenous target (cyclophilin B) by means of RNA interference. Furthermore, the printed 3D model supported efficient adenoviral replication making it suitable to study virus biology and develop new antiviral compounds. We consider the approach described here paradigmatic for the development of 3D tissue models for studies including viral vectors and infectious viruses.


Assuntos
Bioimpressão/métodos , Fígado/citologia , Impressão Tridimensional/instrumentação , Engenharia Tecidual/métodos , Alginatos/química , Bioimpressão/instrumentação , Linhagem Celular , Sobrevivência Celular , Matriz Extracelular/química , Gelatina/química , Humanos , Modelos Biológicos , Alicerces Teciduais
10.
Cancer Immunol Immunother ; 65(9): 1113-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27448806

RESUMO

Neurofibromatosis type 1 (NF1) is a hereditary tumor syndrome caused by mutations of the NF1 gene and resulting dysregulation of the Ras-pathway. In addition to peripheral nerve tumors, affected tissues include the musculoskeletal and cardiovascular system. The immune system has recently been suggested as a possible modulator NF1-related phenotypes. Therefore, we determined the immune phenotype in NF1 patients and investigated its relationship with the phenotypic severity of NF1-related tumor manifestations. We quantified global leukocytes and lymphocyte subpopulations of peripheral blood from 37 NF1 patients and 21 healthy controls by flow cytometry. To associate immune phenotype with tumor phenotype, all NF1 patients underwent whole-body magnetic resonance imaging and total internal tumor volume was calculated. The immunophenotypes were compared among four NF1 groups with different total internal tumor burdens and between NF1 patients and non-NF1 subjects. We found that NF1 patients show a generalized lymphopenia. Closer analysis revealed that the CD8(+)/CD27(-) and CD8(+)/CD57(+) effector T cell fractions strongly increase in NF1 patients with low tumor load and decrease to levels below control in patients with high tumor load. Moreover, increased production of IL2, IFN-γ and TNF-α was found in T cells of NF1 patients upon phorbol-12-myristate acetate (PMA) stimulation compared to healthy controls. The data indicate that decreasing CD8(+)/CD57(+) and CD27(-) T cell fractions correspond to increasing tumor load in NF1 patients, potentially making these populations useful marker for internal tumor burden.


Assuntos
Neurofibromatose 1/imunologia , Neurofibromatose 1/patologia , Linfócitos T/classificação , Linfócitos T/imunologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Linfócitos T/patologia , Carga Tumoral , Adulto Jovem
11.
Bioinformatics ; 31(5): 794-6, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344497

RESUMO

UNLABELLED: Advancing technologies generate large amounts of molecular and phenotypic data on cells, tissues and organisms, leading to an ever-growing detail and complexity while information retrieval and analysis becomes increasingly time-consuming. The Semantic Body Browser is a web application for intuitively exploring the body of an organism from the organ to the subcellular level and visualising expression profiles by means of semantically annotated anatomical illustrations. It is used to comprehend biological and medical data related to the different body structures while relying on the strong pattern recognition capabilities of human users. AVAILABILITY AND IMPLEMENTATION: The Semantic Body Browser is a JavaScript web application that is freely available at http://sbb.cellfinder.org. The source code is provided on https://github.com/flekschas/sbb.


Assuntos
Gráficos por Computador , Expressão Gênica , Corpo Humano , Software , Humanos , Armazenamento e Recuperação da Informação , Internet , Masculino , Semântica
12.
Cell Mol Life Sci ; 72(23): 4671-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26109426

RESUMO

Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.


Assuntos
Proteínas Aviárias/genética , Vírus do Sarcoma Aviário/genética , Engenharia Genética/métodos , Células-Tronco Pluripotentes Induzidas/virologia , Receptores Virais/genética , Proteínas Aviárias/metabolismo , Vírus do Sarcoma Aviário/patogenicidade , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Elementos de DNA Transponíveis , Citometria de Fluxo/métodos , Vetores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Receptores Virais/metabolismo
13.
Nucleic Acids Res ; 42(Database issue): D950-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24304896

RESUMO

CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue types from RNA-seq and microarrays and 553 905 protein expressions for 535 cells/tissues. Text mining of a corpus of >2000 publications followed by manual curation confirmed expression information on ∼900 proteins and genes. CellFinder's data model is capable to seamlessly represent entities from single cells to the organ level, to incorporate mappings between homologous entities in different species and to describe processes of cell development and differentiation. Its ontological backbone currently consists of 204 741 ontology terms incorporated from 10 different ontologies unified under the novel CELDA ontology. CellFinder's web portal allows searching, browsing and comparing the stored data, interactive construction of developmental trees and navigating the partonomic hierarchy of cells and tissues through a unique body browser designed for life scientists and clinicians.


Assuntos
Células/metabolismo , Bases de Dados Factuais , Animais , Linhagem Celular , Fenômenos Fisiológicos Celulares , Células/citologia , Estruturas Celulares/ultraestrutura , Mineração de Dados , Perfilação da Expressão Gênica , Humanos , Internet , Rim/citologia , Fígado/citologia , Proteínas/metabolismo , RNA/metabolismo
14.
BMC Genomics ; 16: 645, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26314578

RESUMO

BACKGROUND: Identification of marker genes associated with a specific tissue/cell type is a fundamental challenge in genetic and cell research. Marker genes are of great importance for determining cell identity, and for understanding tissue specific gene function and the molecular mechanisms underlying complex diseases. RESULTS: We have developed a new bioinformatics tool called MGFM (Marker Gene Finder in Microarray data) to predict marker genes from microarray gene expression data. Marker genes are identified through the grouping of samples of the same type with similar marker gene expression levels. We verified our approach using two microarray data sets from the NCBI's Gene Expression Omnibus public repository encompassing samples for similar sets of five human tissues (brain, heart, kidney, liver, and lung). Comparison with another tool for tissue-specific gene identification and validation with literature-derived established tissue markers established functionality, accuracy and simplicity of our tool. Furthermore, top ranked marker genes were experimentally validated by reverse transcriptase-polymerase chain reaction (RT-PCR). The sets of predicted marker genes associated with the five selected tissues comprised well-known genes of particular importance in these tissues. The tool is freely available from the Bioconductor web site, and it is also provided as an online application integrated into the CellFinder platform ( http://cellfinder.org/analysis/marker ). CONCLUSIONS: MGFM is a useful tool to predict tissue/cell type marker genes using microarray gene expression data. The implementation of the tool as an R-package as well as an application within CellFinder facilitates its use.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Ontologia Genética , Estudos de Associação Genética/métodos , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Navegador
15.
Cytotherapy ; 17(2): 199-214, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25457280

RESUMO

BACKGROUND AIMS: In Parkinson's disease (PD), neurogenesis in the subventricular zone (SVZ)-olfactory bulb (OB) axis is affected as the result of the lack of dopaminergic innervations reaching the SVZ. This aberrant network has been related to the hyposmia of PD patients, which is an early diagnostic marker of the disease. Consequently, much interest arose in finding mechanisms to modulate the SVZ-OB axis. Direct modulation of this axis could be achieved by transplantation of mesenchymal stromal cells (MSC), as it has been shown in rat and mouse PD models. However, the neurogenic effect of MSC in PD was thus far only analyzed weeks after transplantation, and little is known about effects immediately after transplantation. METHODS: We assessed the acute neuroprotective and neurogenic effects of adipose-derived MSC transplanted into the rat substantia nigra in the 6-hydroxydopamine model of PD. RESULTS: Three days after transplantation, subventricular neurogenesis was significantly increased in MSC-transplanted versus non-transplanted animals. Most MSC were found in the region of the substantia nigra and the surrounding arachnoid mater, expressing S100ß and brain-derived neurotrophic factor, whereas some MSC showed an endothelial phenotype and localized around blood vessels. CONCLUSIONS: The acute neurogenic effects and neurotrophic factor expression of MSC could help to restore the SVZ-OB axis in PD.


Assuntos
Tecido Adiposo/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Neurogênese/fisiologia , Doença de Parkinson/terapia , Adulto , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Proliferação de Células/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Ventrículos Laterais/citologia , Obesidade/metabolismo , Bulbo Olfatório/citologia , Oxidopamina/efeitos adversos , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/biossíntese , Substância Negra/citologia , Adulto Jovem
16.
Cell Physiol Biochem ; 34(3): 646-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170622

RESUMO

BACKGROUND/AIMS: Cell-based therapies may be useful for treating ischemic diseases, but the underlying mechanisms are incompletely understood. We investigated the impact of cord blood mesenchymal stromal cell (CBMSC)- or fibroblast (FB)-secreted factors on starved endothelial cells and determined the relevant intracellular signaling pathways. METHODS: HUVECs were subjected to glucose/serum deprivation (GSD) in hypoxia or normoxia, in presence of CBMSC- or FB-conditioned medium (CM). Viability and proliferation were determined via WST-8 conversion and BrdU incorporation. Apoptosis was quantified by annexin V/ethidium homodimer-III staining, nuclear fragmentation and cell morphology. mRNA expression and protein phosphorylation were determined by real-time qPCR and western blot. Experiments were repeated in presence of small-molecule inhibitors. RESULTS: The negative impact of GSD was most pronounced at 21% O2. Here, medium of CBMSCs and FBs increased viability and proliferation and reduced apoptosis of HUVECs. This was associated with increased STAT3 and ERK1/2 phosphorylation and BCL-2 expression. Under STAT3 inhibition, the beneficial effect of CBMSC-CM on viability and BCL-2 expression was abolished. CONCLUSION: Factors released by CBMSCs protect endothelial cells from the deleterious impact of GSD by activation of the STAT3 survival pathway. However, this phenomenon is not CBMSC-specific and can be reproduced using juvenile fibroblasts.


Assuntos
Meios de Cultivo Condicionados , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sequência de Bases , Primers do DNA , Células Endoteliais da Veia Umbilical Humana , Humanos , Reação em Cadeia da Polimerase em Tempo Real
17.
Stem Cell Reports ; 19(9): 1233-1241, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39151430

RESUMO

Governance infrastructures streamline scientific and ethical provenance verification of human pluripotent stem cell (SC) lines. Yet, scientific developments (e.g., SC-derived embryo models, organoids) challenge research governance approaches to stored biospecimens, questioning the validity of informed consent (IC) models. Likewise, e-health platforms are driving major transformations in data processing, prompting a reappraisal of IC. Given these developments, participatory research platforms are identified as effective tools to promote longitudinal engagement, interactive decision-making, and dynamic governance. Learning from European initiatives piloting dynamic IC for biobanking and SC research, this Perspective explores the benefits and challenges of implementing dynamic IC and governance for SC.


Assuntos
Bancos de Espécimes Biológicos , Consentimento Livre e Esclarecido , Pesquisa com Células-Tronco , Humanos , Pesquisa com Células-Tronco/ética , Pesquisa com Células-Tronco/legislação & jurisprudência , Consentimento Livre e Esclarecido/ética , Bancos de Espécimes Biológicos/ética , Células-Tronco Pluripotentes/citologia
18.
Stem Cell Res ; 79: 103482, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959701

RESUMO

The recently issued ISSCR standards in stem cell research recommend registration of human pluripotent stem cell lines (hPSCs). Registration is critical to establishing stem cell provenance and connecting cell lines to data derived on those lines. In this study, we sought to understand common barriers to registration by conducting interviews with forty-eight Australian stem cell stakeholders, including researchers, clinicians, and industry professionals. Australian stem cell researchers do not routinely register their lines, and only a third of those Australian lines captured by an international registry have fully completed the registration process. Most registered Australian cell lines lack complete information about their ethical provenance or key pluripotency characteristics. Incomplete registration is poorly aligned with the goals of open science on which registries are founded. Users also expressed concerns about the quality of the incomplete information provided to the resource. Registration was considered negatively, for instance as a hurdle or barrier to publication, which impacted on user perceptions of usefulness of registration and lowered the likelihood that they would engage with registries to find resources. Broader adoption of registration by journals, and continued advocacy by stem cell societies, will be important levers for awareness and engagement with registration. Although the Australian community represents a small fraction of potential registry users, the results of this study suggest ways for journals, registries, funders, and the international stem cell community to improve registration compliance.


Assuntos
Sistema de Registros , Pesquisadores , Humanos , Austrália , Pesquisa com Células-Tronco , Linhagem Celular , Células-Tronco Pluripotentes/citologia
19.
Stem Cell Reports ; 19(10): 1369-1378, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39332404

RESUMO

Each pluripotent stem cell line has a physical entity as well as a digital phenotype, but linking the two unambiguously is confounded by poor naming practices and assumed knowledge. Registration gives each line a unique and persistent identifier that links to phenotypic data generated over the lifetime of that line. Registration is a key recommendation of the 2023 ISSCR Standards for the use of human stem cells in research. Here we consider how community adoption of stem cell line registration could facilitate the establishment of integrated digital phenotypes of specific human pluripotent stem cell (hPSC) lines.


Assuntos
Fenótipo , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Linhagem Celular , Guias como Assunto
20.
Animals (Basel) ; 14(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891588

RESUMO

The documentation, preservation and rescue of biological diversity increasingly uses living biological samples. Persistent associations between species, biosamples, such as tissues and cell lines, and the accompanying data are indispensable for using, exchanging and benefiting from these valuable materials. Explicit authentication of such biosamples by assigning unique and robust identifiers is therefore required to allow for unambiguous referencing, avoid identification conflicts and maintain reproducibility in research. A predefined nomenclature based on uniform rules would facilitate this process. However, such a nomenclature is currently lacking for animal biological material. We here present a first, standardized, human-readable nomenclature design, which is sufficient to generate unique and stable identifying names for animal cellular material with a focus on wildlife species. A species-specific human- and machine-readable syntax is included in the proposed standard naming scheme, allowing for the traceability of donated material and cultured cells, as well as data FAIRification. Only when it is consistently applied in the public domain, as publications and inter-institutional samples and data are exchanged, distributed and stored centrally, can the risks of misidentification and loss of traceability be mitigated. This innovative globally applicable identification system provides a standard for a sustainable structure for the long-term storage of animal bio-samples in cryobanks and hence facilitates current as well as future species conservation and biomedical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA