Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 111(6): 1626-1642, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35932489

RESUMO

Glutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by γ-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that γ-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay. Recombinant proteins of GGP1, as well as GGP3, showed high degradation activity of GSH, but not of oxidized glutathione (GSSG), in vitro. Notably, the GGP1 transcripts were highly abundant in rosette leaves, in agreement with the ggp1 mutants constantly accumulating more GSH regardless of nutritional conditions. Given the lower energy requirements of the GGP- than the GGCT-mediated pathway, the GGP-mediated pathway could be a more efficient route for GSH degradation than the GGCT-mediated pathway. Therefore, we propose a model wherein cytosolic GSH is degraded chiefly by GGP1 and likely also by GGP3. Another noteworthy fact is that GGPs are known to process GSH conjugates in glucosinolate and camalexin synthesis; indeed, we confirmed that the ggp1 mutant contained higher levels of O-acetyl-l-Ser, a signaling molecule for sulfur starvation, and lower levels of glucosinolates and their degradation products. The predicted structure of GGP1 further provided a rationale for this hypothesis. In conclusion, we suggest that GGP1 and possibly GGP3 play vital roles in both primary and secondary sulfur metabolism.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo
2.
Biochim Biophys Acta ; 1857(6): 831-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27001609

RESUMO

The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel, and this complex is believed to consist of a pore-forming subunit, MCU, and its regulatory subunits. As yeast cells lack orthologues of the mammalian proteins, the yeast expression system for the mammalian calcium uniporter subunits is useful for investigating their functions. We here established a yeast expression system for the native-form mouse MCU and 4 other subunits. This expression system enabled us to precisely reconstitute the properties of the mammalian MCU complex in yeast mitochondria. Using this expression system, we analyzed the essential MCU regulator (EMRE), which is a key subunit for Ca(2+) uptake but whose functions and structure remain unclear. The topology of EMRE was revealed: its N- and C-termini projected into the matrix and the inter membrane space, respectively. The expression of EMRE alone was insufficient for Ca(2+) uptake; and co-expression of MCU with EMRE was necessary. EMRE was independent of the protein levels of other subunits, indicating that EMRE was not a protein-stabilizing factor. Deletion of acidic amino acids conserved in EMRE did not significantly affect Ca(2+) uptake; thus, EMRE did not have basic properties of ion channels such as ion-selectivity filtration and ion concentration. Meanwhile, EMRE closely interacted with the MCU on both sides of the inner membrane, and this interaction was essential for Ca(2+) uptake. This close interaction suggested that EMRE might be a structural factor for opening of the MCU-forming pore.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Canais de Cálcio/genética , Células HEK293 , Humanos , Immunoblotting , Proteínas de Membrana/genética , Camundongos , Microscopia de Fluorescência , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
3.
Mol Cell Biochem ; 404(1-2): 25-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25697272

RESUMO

The characteristics of antibody delivery into cultured HeLa cells were examined using two delivery systems. Both systems used a cell-penetrating peptide as a tool for intrusion of an antibody into the cells, but either a "protein A derivative" or "hydrophobic motif" was employed to capture the antibody. When we examined the uptake of the Alexa Fluor-labeled antibody by the use of these two systems, both systems were found to effectively deliver the antibody into the cultured cells. However, when we compared the amount of antibody delivered by these systems with the amount of transferrin uptake, the former was 10 times smaller than the latter. The lower efficiency of antibody delivery than transferrin uptake seemed to be attributable to the involvement of the antibody delivery reagent, which failed to catch the antibody molecule. This interpretation was validated by an experiment using a larger amount of antibody, and the amount of antibody delivered by the "protein A derivative" system under this condition was determined to be 13 ng proteins/10(5) cells. The antibody delivery achieved by the "protein A derivative" or "hydrophobic motif" showed two differences, i.e., a difference in intracellular distribution of the delivered antibody molecules and a difference in the fluorescence spectrum observed with cellular lysates. Possible reasons for these differences between the two delivery systems are discussed.


Assuntos
Anticorpos/metabolismo , Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos , Proteína Estafilocócica A/metabolismo , Anticorpos/uso terapêutico , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/uso terapêutico , Citoplasma/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteína Estafilocócica A/química , Transferrina/metabolismo
4.
FEBS J ; 281(17): 3933-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25039402

RESUMO

The mastoparan peptide is known as an inducer of the mitochondrial permeability transition. Although mastoparan was suggested to interact with a proteinaceous target in mitochondria to induce this transition, the action sites of mastoparan have not yet been investigated. To clarify whether specific interactions of mastoparan with receptors or enzymes are associated with the induction of this permeability transition, we examined the effects of d-isomeric peptides, which were synthesized using d-amino acids assembled in endogenous (inverso mastoparan) and reverse (retro-inverso mastoparan) orientations. When we added inverso mastoparan to isolated mitochondria, the peptide caused the permeability transition in a partially cyclosporin A-sensitive manner at lower doses and in a cyclosporin A-insensitive manner at higher ones. The manners of action and the potencies of inverso mastoparan were close to those of parent mastoparan, indicating that the targets of mastoparan for induction of the permeability transition were neither receptors, nor enzymes in the mitochondria. Retro-inverso mastoparan also had the same effect on the mitochondria as mastoparan, although the potencies of the effect were weaker. Not only on mitochondria, but also on phospholipid vesicles, mastoparan and inverso mastoparan showed massive permeabilization effects at the same potencies, although retro-inverso mastoparan showed weaker ones. These results indicate that mastoparan interacted with the phospholipid phase of the mitochondrial membrane (and not with specific proteins) to induce the permeabilization in cyclosporin A-sensitive and -insensitive manners.


Assuntos
Lipídeos de Membrana/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Peptídeos/farmacologia , Fosfatidilcolinas/metabolismo , Venenos de Vespas/farmacologia , Animais , Ciclosporina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Peptídeos/química , Ratos , Estereoisomerismo , Venenos de Vespas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA