Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
PLoS Genet ; 18(1): e1009747, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025863

RESUMO

Improving our understanding of the genes regulating grain yield can contribute to the development of more productive wheat varieties. Previously, a highly significant QTL affecting spikelet number per spike (SNS), grain number per spike (GNS) and grain yield was detected on chromosome arm 7AL in multiple genome-wide association studies. Using a high-resolution genetic map, we established that the A-genome homeolog of WHEAT ORTHOLOG OF APO1 (WAPO-A1) was a leading candidate gene for this QTL. Using mutants and transgenic plants, we demonstrate in this study that WAPO-A1 is the causal gene underpinning this QTL. Loss-of-function mutants wapo-A1 and wapo-B1 showed reduced SNS in tetraploid wheat, and the effect was exacerbated in wapo1 combining both mutations. By contrast, spikes of transgenic wheat plants carrying extra copies of WAPO-A1 driven by its native promoter had higher SNS, a more compact spike apical region and a smaller terminal spikelet than the wild type. Taken together, these results indicate that WAPO1 affects SNS by regulating the timing of terminal spikelet formation. Both transgenic and wapo1 mutant plants showed a wide range of floral abnormalities, indicating additional roles of WAPO1 on wheat floral development. Previously, we found three widespread haplotypes in the QTL region (H1, H2 and H3), each associated with particular WAPO-A1 alleles. Results from this and our previous study show that the WAPO-A1 allele in the H1 haplotype (115-bp deletion in the promoter) is expressed at significantly lower levels in the developing spikes than the alleles in the H2 and H3 haplotypes, resulting in reduced SNS. Field experiments also showed that the H2 haplotype is associated with the strongest effects in increasing SNS and GNS (H2>H3>H1). The H2 haplotype is already present in most modern common wheat varieties but is rare in durum wheat, where it might be particularly useful to improve grain yield.


Assuntos
Mapeamento Cromossômico/métodos , Proteínas de Plantas/genética , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Ligação Genética , Haplótipos , Mutação com Perda de Função , Deleção de Sequência , Triticum/genética
2.
New Phytol ; 235(6): 2454-2465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708662

RESUMO

Fruit development has been central in the evolution and domestication of flowering plants. In common bean (Phaseolus vulgaris), the principal global grain legume staple, two main production categories are distinguished by fibre deposition in pods: dry beans, with fibrous, stringy pods; and stringless snap/green beans, with reduced fibre deposition, which frequently revert to the ancestral stringy state. Here, we identify genetic and developmental patterns associated with pod fibre deposition. Transcriptional, anatomical, epigenetic and genetic regulation of pod strings were explored through RNA-seq, RT-qPCR, fluorescence microscopy, bisulfite sequencing and whole-genome sequencing. Overexpression of the INDEHISCENT ('PvIND') orthologue was observed in stringless types compared with isogenic stringy lines, associated with overspecification of weak dehiscence-zone cells throughout the pod vascular sheath. No differences in DNA methylation were correlated with this phenotype. Nonstringy varieties showed a tandemly direct duplicated PvIND and a Ty1-copia retrotransposon inserted between the two repeats. These sequence features are lost during pod reversion and are predictive of pod phenotype in diverse materials, supporting their role in PvIND overexpression and reversible string phenotype. Our results give insight into reversible gain-of-function mutations and possible genetic solutions to the reversion problem, of considerable economic value for green bean production.


Assuntos
Phaseolus , Domesticação , Duplicação Gênica , Phaseolus/genética , Fenótipo , Retroelementos/genética
3.
Theor Appl Genet ; 132(9): 2689-2705, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31254024

RESUMO

KEY MESSAGE: A high-resolution genetic map combined with haplotype analyses identified a wheat ortholog of rice gene APO1 as the best candidate gene for a 7AL locus affecting spikelet number per spike. A better understanding of the genes controlling differences in wheat grain yield components can accelerate the improvements required to satisfy future food demands. In this study, we identified a promising candidate gene underlying a quantitative trait locus (QTL) on wheat chromosome arm 7AL regulating spikelet number per spike (SNS). We used large heterogeneous inbred families ( > 10,000 plants) from two crosses to map the 7AL QTL to an 87-kb region (674,019,191-674,106,327 bp, RefSeq v1.0) containing two complete and two partial genes. In this region, we found three major haplotypes that were designated as H1, H2 and H3. The H2 haplotype contributed the high-SNS allele in both H1 × H2 and H2 × H3 segregating populations. The ancestral H3 haplotype is frequent in wild emmer (48%) but rare (~ 1%) in cultivated wheats. By contrast, the H1 and H2 haplotypes became predominant in modern cultivated durum and common wheat, respectively. Among the four candidate genes, only TraesCS7A02G481600 showed a non-synonymous polymorphism that differentiated H2 from the other two haplotypes. This gene, designated here as WHEAT ORTHOLOG OF APO1 (WAPO1), is an ortholog of the rice gene ABERRANT PANICLE ORGANIZATION 1 (APO1), which affects spikelet number. Taken together, the high-resolution genetic map, the association between polymorphisms in the different mapping populations with differences in SNS, and the known role of orthologous genes in other grass species suggest that WAPO-A1 is the most likely candidate gene for the 7AL SNS QTL among the four genes identified in the candidate gene region.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Marcadores Genéticos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Triticum/genética , Ligação Genética , Genótipo , Haplótipos , Fenótipo , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA