Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 190: 110879, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32135495

RESUMO

The efficiency of magnetic labeling with L-Lys-modified Fe3O4 magnetic nanoparticles (MNPs) and the stability of magnetization of rat adipose-derived mesenchymal stem cells, lineage-negative (Lin(-)) hematopoietic progenitor cells from mouse bone marrow and human leukemia K562 cells were studied. For this purpose, covalent modification of MNPs with 3-aminopropylsilane and N-di-Fmoc-L-lysine followed by removal of N-protecting groups was carried out. Since the degree of hydroxylation of the surface of the starting nanoparticles plays a crucial role in the silanization reaction and the possibility of obtaining stable colloidal solutions. In present work we for the first time performed a comparative qualitative and quantitative evaluation of the number of adsorbed water molecules and hydroxyl groups on the surface of chemically and physically obtained Fe3O4 MNPs using comprehensive FTIR spectroscopy and thermogravimetric analysis. The results obtained can be further used for magnetic labeling of cells in experiments in vitro and in vivo.


Assuntos
Compostos Férricos/química , Lisina/química , Nanopartículas de Magnetita/química , Animais , Células Cultivadas , Humanos , Células K562 , Fenômenos Magnéticos , Tamanho da Partícula , Ratos , Propriedades de Superfície
2.
Toxicology ; 384: 59-68, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28450064

RESUMO

While engineered SiO2 nanoparticle toxicity is being widely investigated, mostly on cell lines or in acute animal experiments, the practical importance of as well as the theoretical interest in industrial condensation aerosols with a high SiO2 particle content seems to be neglected. That is why, to the best of our knowledge, long-term inhalation exposure to nano-SiO2 has not been undertaken in experimental nanotoxicology studies. To correct this data gap, female white rats were exposed for 3 or 6 months 5 times a week, 4h a day to an aerosol containing predominantly submicron (nanoscale included) particles of amorphous silica at an exposure concentration of 2.6±0.6 or 10.6±2.1mg/m3. This material had been collected from the flue-gas ducts of electric ore smelting furnaces that were producing elemental silicon, subsequently sieved through a<2µm screen and redispersed to feed a computerized "nose only" inhalation system. In an auxiliary experiment using a single-shot intratracheal instillation of these particles, it was shown that they induced a pulmonary cell response comparable with that of a highly cytotoxic and fibrogenic quartz powder, namely DQ12. However, in long-term inhalation tests, the aerosol studied proved to be of very low systemic toxicity and negligible pulmonary fibrogenicity. This paradox may be explained by a low SiO2 retention in the lungs and other organs due to the relatively high solubility of these nanoparticles. nasal penetration of nanoparticles into the brain as well as their genotoxic action were found in the same experiment, results that make one give a cautious overall assessment of this aerosol as an occupational or environmental hazard.


Assuntos
Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Administração por Inalação , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Linfonodos/metabolismo , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ratos , Dióxido de Silício/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA