Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(9): 6357-6363, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32706592

RESUMO

Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications. Here, we demonstrate an essential component of such a system in the form of a Purcell-enhanced single-photon source based on a quantum dot coupled to a robust on-chip integrated resonator. For that, we develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides. Under resonant excitation conditions, we observe an over 2-fold spontaneous emission rate enhancement using Purcell effect and gain a full coherent optical control of a QD-two-level system via Rabi oscillations. Furthermore, we demonstrate an on-demand single-photon generation with strongly suppressed multiphoton emission probability as low as 1% and two-photon interference with visibility up to 95%. This integrated single-photon source can be readily scaled up, promising a realistic pathway for scalable on-chip linear optical quantum simulation, quantum computation, and quantum networks.

2.
Sensors (Basel) ; 20(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660031

RESUMO

Hydrogen sensor technologies have been rapidly developing. For effective and safe sensing, we proposed a hydrogen sensor composed of magnesium (Mg), silver (Ag), and palladium (Pd) nano-blocks that overcomes the spectral resolution limit. This sensor exploited the properties of Mg and Pd when absorbing hydrogen. Mg became a dielectric material, and the atomic lattice of Pd expanded. These properties led to changes in the plasmonic gap mode between the nano-blocks. Owing to the changing gap mode, the far-field scattering pattern significantly changed with the hydrogen concentration. Thus, sensing the hydrogen concentration was able to be achieved simply by detecting the far-field intensity at a certain angle for incident light with a specific wavelength.

3.
Phys Rev Lett ; 122(17): 173602, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31107087

RESUMO

Integrated single photon sources are key building blocks for realizing scalable devices for quantum information processing. For such applications highly coherent and indistinguishable single photons on a chip are required. Here we report on a triggered resonance fluorescence single photon source based on In(Ga)As/GaAs quantum dots coupled to single- and multimode ridge waveguides. We demonstrate the generation of highly linearly polarized resonance fluorescence photons with 99.1% (96.0%) single photon purity and 97.5% (95.0%) indistinguishability in case of multimode (single mode) waveguide devices fulfilling the strict requirements imposed by multi-interferometric quantum optics applications. Our integrated triggered single photon source can be readily scaled up, promising a realistic pathway for on-chip linear optical quantum simulation, quantum computation, and quantum networks.

4.
Sensors (Basel) ; 19(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547504

RESUMO

In this study, we propose a multi-color detector using a simple plasmonic metamaterial structure consisting of a silver and a indium phosphide. The color detector is composed of a metal strip with a periodicity in the x-axis direction on a layer of the dielectric material located on a metal substrate. This color detector can control the spectrum absorbed in the dielectric material layer by changing the thickness of the dielectric material layer or the width of the metal strip. The triangle formed by the three primary colors, namely, red, green, and blue, which are representatively detected by optimizing the color detector using only silver and indium phosphide, covers 44% of the standard Red Green Blue (sRGB) region. Furthermore, the area of the triangle obtained by further optimization, such as changing the material to gold or gallium phosphide or changing the period of the metal stirp, can aid in the detection of a larger number of colors covering 108% of the sRGB area.

5.
Opt Express ; 26(20): 25944-25951, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469688

RESUMO

We discuss coupling of site-selectively induced quantum emitters in exfoliated monolayers of WSe2 to plasmonic nanostructures. Gold nanorods of 20 nm-240 nm size, which are arranged in pitches of a few micrometers on a dielectric surface, act as seeds for the formation of quantum emitters in the atomically thin materials. We observe characteristic narrow-band emission signals from the monolayers, which correspond well with the positions of the metallic nanopillars with and without thin dielectric coating. Single photon emission from the emitters is confirmed by autocorrelation measurements, yielding g2(τ = 0) values as low as 0.17. Moreover, we observe a strong co-polarization of our single photon emitters with the frequency matched plasmonic resonances, as a consequence of light-matter coupling. Our work represents a significant step towards the scalable implementation of coupled quantum emitter-resonator systems for highly integrated quantum photonic and plasmonic applications.

6.
Sensors (Basel) ; 18(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304794

RESUMO

A novel method is proposed to detect the horizontal shift of a specific nanoblock relative to a reference nanoblock using surface plasmon modes at nanometer resolution. To accomplish this task, two orthogonal localized surface plasmon resonances were excited within the air gap region between the silver nanoblocks at the respective wavelengths, 890 nm, and 1100 nm. This technique utilized the scattering far-field intensities of the two block nanostructures at the two specific wavelengths at two specific directional spots. The ratio of the scattering intensities at the two spots changed according to the horizontal shift of the block that moved. Correspondingly, this ratio can be used to provide the precise location of the block. This method can be applied to many fields, including label-free bio-sensing, bio-analysis and alignment during nano-fabrication, owing to the high resolution and simplicity of the process.

7.
Sensors (Basel) ; 17(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099740

RESUMO

Sensitive refractive index sensors with small footprints have been studied to allow the integration of a large number of sensors into a tiny chip for bio/chemical applications. In particular, resonant-type index sensors based on various micro/nanocavities, which use a resonant wavelength dependence on the refractive index of the analyte, have been developed. However, the spectral linewidth of the resonance, which becomes the resolution limit, is considerably large in plasmonic cavities due to the large absorption loss of metals. Therefore, there is demand for a new type of plasmonic refractive index sensor that is not limited by the linewidth of the cavity. We propose a new type of plasmonic index sensors consisting of a channel waveguide and a ring cavity. Two emissions from the ring cavity in both directions of the waveguide couple with a reflection phase difference depending on the length of a closed right arm with a reflecting boundary. Therefore, the output power dramatically and sensitively changes as a function of the refractive index of the analyte filling the waveguide.

8.
Sensors (Basel) ; 17(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120381

RESUMO

A Mach-Zehnder interferometer based on a plasmonic channel waveguide is proposed for refractive index sensing. The structure, with a small physical footprint of 20 × 120 µm², achieved a high figure of merit of 294. The cut-off frequency behaviour in the plasmonic channel waveguide resulted in a flat dispersion curve, which induces a 1.8 times larger change of the propagation constant for the given refractive index change compared with previously reported results.

9.
Opt Express ; 23(5): 5907-14, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836817

RESUMO

A tapered plasmonic channel waveguide can be used for index sensing by spatial mapping of the scattering field intensity. A numerical simulation shows that this waveguide reflects the plasmonic channel waveguide mode at various points as the refractive index of an analyte changes, and a strong outgoing scattering wave appears at the reflection point. One can measure the index change by detecting variations in the scattering point. In the case of a unit index change, the scattering point moved 2670 nm, which can be observed by an imaging system. Detection limit of the index change is estimated as 0.12. However, the limit can be further reduced by increasing the tapered length or decreasing the tapered angle of the structure.

10.
J Mater Sci Mater Med ; 25(6): 1519-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24577945

RESUMO

Cellulose is one of the most widespread biomolecules in nature and has been exploited in various applications including scaffolding, tissue engineering, and tissue formation. To evaluate the biocompatibility of cellulose film manufactured from Styela clava tunics (SCT-CF), these films were implanted in Sprague-Dawley (SD) rats for various lengths of time, after which they were subjected to mechanical and biological analyses. The cellulose powders (12-268 m) obtained from SCT was converted into films via casting methods without adding any additives. SCT-CF contained about 98 % α-cellulose and very low concentrations of ßß-cellulose. Additionally, the crystallinity index (CrI) of SCT-CF was lower (10.71 %) than that of wood pulp-cellulose films (WP-CF) (33.78 %). After implantation for 90 days, the weight loss and formation of surface corrugations were greater in SCT-CF than that of WP-CF, while the surface roughness was significantly higher in WP-CF than SCT-CF. However, there were no differences in the number of white blood cells between SCT-CF implanted rats and vehicle implanted rats. The level of metabolic enzymes representing liver and kidney toxicity in the serum of SCT-CF implanted rats was maintained at levels consistent with vehicle implanted rats. Moreover, no significant alteration of the epidermal hyperplasia, inflammatory cell infiltration, redness, and edema were observed in SD rats implanted with SCT-CF. Taken together, these results indicate that SCT-CF showed good degradability and non-toxicity without inducing an immune response in SD rats. Further, the data presented here constitute strong evidence that SCT-CF has the potential for use as a powerful biomaterial for medical applications including stitching fiber, wound dressing, scaffolding, absorbable hemostats and hemodialysis membrane.


Assuntos
Implantes Absorvíveis/efeitos adversos , Celulose/química , Celulose/toxicidade , Membranas Artificiais , Pele/efeitos dos fármacos , Pele/patologia , Urocordados/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/isolamento & purificação , Materiais Biocompatíveis/toxicidade , Celulose/isolamento & purificação , Masculino , Teste de Materiais , Ratos , Ratos Sprague-Dawley , Pele/química , Fenômenos Fisiológicos da Pele/efeitos dos fármacos
11.
Nano Lett ; 13(2): 772-6, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23324101

RESUMO

We demonstrate the efficient integration of an electrically driven nanowire (NW) light source with a double-strip plasmonic waveguide. A top-down-fabricated GaAs NW light-emitting diode (LED) is placed between two straight gold strip waveguides with the gap distance decreasing to 30 nm at the end of the waveguide and operated by current injection through the p-contact electrode acting as a plasmonic waveguide. Measurements of polarization-resolved images and spectra show that the light emission from the NW LED was coupled to a plasmonic waveguide mode, propagated through the waveguide, and was focused onto a subwavelength-sized spot of surface plasmon polaritons at the tapered end of the waveguide. Numerical simulation agreed well with these experimental results, confirming that a symmetric plasmonic waveguide mode was excited on the top surface of the waveguide. Our demonstration of a plasmonic waveguide coupled to an electrically driven NW LED represents important progress toward further miniaturization and practical implementation of ultracompact photonic integrated circuits.

12.
Micromachines (Basel) ; 14(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37420948

RESUMO

Beam steering technology is crucial for radio frequency and infrared telecommunication signal processing. Microelectromechanical systems (MEMS) are typically used for beam steering in infrared optics-based fields but have slow operational speeds. An alternative solution is to use tunable metasurfaces. Since graphene has gate-tunable optical properties, it is widely used in electrically tunable optical devices due to ultrathin physical thickness. We propose a tunable metasurface structure using graphene in a metal gap structure that can exhibit a fast-operating speed through bias control. The proposed structure can change beam steering and can focus immediately by controlling the Fermi energy distribution on the metasurface, thus overcoming the limitations of MEMS. The operation is numerically demonstrated through finite element method simulations.

13.
Opt Express ; 20(22): 24918-24, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187259

RESUMO

We propose a plasmonic whispering-gallery-mode cavity comprising of a dielectric disk with sub-hundred nanometer thickness sandwiched by two silver disks. By reducing radius and thickness carefully based on the investigated resonant wavelength dependencies, the surface-plasmon-polariton cavity mode with a resonant wavelength of 1550 nm can be confined in a disk with a radius of 88 nm and a thickness of 10 nm, where the physical size of the cavity is 0.000064 λ(0) <(3) (λ(0): free space wavelength). The cavity mode has a deep subwavelength mode volume of 0.010 (λ/2n)(3) and a high quality factor of 1900 at 40K, consequently, a large Purcell factor of 1.1 x 10(5).

14.
Nano Lett ; 11(7): 3022-5, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21635014

RESUMO

The realization of nonlinear photonic circuits to achieve the control of light-by-light is contingent upon a strong nonlinear response that can be captured in a guided-wave geometry. There remains a need to further scale down waveguides while maintaining a strong nonlinear response. In this study, we report second-harmonic generation and optical parametric generation using the second-order nonlinear response in an 80 nm thick CdS nanowire subwavelength waveguide. Moreover, our three-dimensional finite-difference time-domain (FDTD) simulations demonstrate that it is possible to enhance the coherence length due to the very nature of the subwavelength geometry. Nonlinear mixing in a nanowire subwavelength waveguide represents an advance toward all-optical processing and all-optical switching in integrated photonic circuits.


Assuntos
Compostos de Cádmio/química , Nanotecnologia , Nanofios/química , Sulfetos/química , Tamanho da Partícula , Propriedades de Superfície
15.
Opt Express ; 19(15): 13892-8, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21934750

RESUMO

A low-loss plasmonic cavity is proposed comprising of channel waveguides of different widths. Numerical simulations show that surface plasmons are strongly confined by a mode-gap mechanism in the cavity that has a mode volume of 0.0040 (λ/n)3 and a room temperature quality (Q) factor of 125. The introduction of low-index material can enhance the room temperature Q factor by 2.5 times to 350, while maintaining the mode confinement of 0.040 (λ/n)3- well below the wavelength-scale in free space. The suppression of losses from radiation and metallic absorption in the cavity would allow room temperature plasmonic laser operation, and constitutes significant progress towards practical coherent light sources for such lasers.

16.
Opt Express ; 19(2): 1609-16, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21263700

RESUMO

This paper proposes a polarization-selective light emitter that can enhance preferentially the spontaneous emission rate of one desired polarization state using a one-dimensional metal grating mirror. Systematic numerical simulations were performed to determine the optimized structural parameters of the metal grating mirror consisting of ITO/silver, in which the two orthogonally polarized lights reflected from the grating mirror undergo completely opposite phases. This metal grating mirror was incorporated into a GaN medium, and the spontaneous emission rate of one linearly polarized light was 1.3 times higher than that of the other at a specific distance between the light source and mirror. In addition, the polarization ratio can be increased to 15:1 by considering the extracted power in a practical vertical GaN slab light-emitting diode structure. This study will be useful for demonstrating high-efficiency polarization-selective light-emitting diodes without using additional optical components, such as a polarizer.


Assuntos
Lentes , Iluminação/instrumentação , Refratometria/instrumentação , Prata/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
17.
Opt Lett ; 36(11): 2011-3, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21633432

RESUMO

We propose an ultrasmall plasmonic cavity consisting of a high-index/low-index dielectric nanorod covered with silver. Full three-dimensional subwavelength confinement of the surface-plasmon polaritons was achieved at the high-index dielectric-silver interface without propagating to the low-index dielectric-silver interface. The numerical simulations showed that the plasmonic mode excited in this cavity has a deep subwavelength mode volume of 0.0038(λ/2n)(3) and a quality factor of 1500 at 40 K, and consequently a large Purcell factor of ∼2×10(5). Therefore, this plasmonic cavity is expected to be useful for the demonstration of high-efficiency single photon sources or low-threshold lasers in an ultracompact nanophotonic circuit.

18.
Nano Lett ; 10(9): 3679-83, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20704325

RESUMO

We report the experimental demonstration of an optically pumped silver-nanopan plasmonic laser with a subwavelength mode volume of 0.56(lambda/2n)(3). The lasing mode is clearly identified as a whispering-gallery plasmonic mode confined at the bottom of the silver nanopan from measurements of the spectrum, mode image, and polarization state, as well as agreement with numerical simulations. In addition, the significant temperature-dependent lasing threshold of the plasmonic mode contrasts and distinguishes them from optical modes. Our demonstration and understanding of these subwavelength plasmonic lasers represent a significant step toward faster, smaller coherent light sources.

19.
Nat Commun ; 12(1): 4135, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226557

RESUMO

Wavelength-scale lasers provide promising applications through low power consumption requiring for optical cavities with increased quality factors. Cavity radiative losses can be suppressed strongly in the regime of optical bound states in the continuum; however, a finite size of the resonator limits the performance of bound states in the continuum as cavity modes for active nanophotonic devices. Here, we employ the concept of a supercavity mode created by merging symmetry-protected and accidental bound states in the continuum in the momentum space, and realize an efficient laser based on a finite-size cavity with a small footprint. We trace the evolution of lasing properties before and after the merging point by varying the lattice spacing, and we reveal this laser demonstrates the significantly reduced threshold, substantially increased quality factor, and shrunken far-field images. Our results provide a route for nanolasers with reduced out-of-plane losses in finite-size active nanodevices and improved lasing characteristics.

20.
Chem Commun (Camb) ; 57(40): 4875-4885, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33881425

RESUMO

High quality factor and small mode volume in nanocavities enable the demonstration of efficient nanophotonic devices with low power consumption, strong nonlinearity, and high modulation speed, due to the strong light-matter interaction. In this review, we focus on recent state-of-the-art nanocavities and their applications. We introduce single nanocavities including semiconductor nanowires, plasmonic cavities, and nanostructures based on quasi-bound states in the continuum (quasi-BIC), for laser, photovoltaic, and nonlinear applications. In addition, nanocavity arrays with unique feedback mechanisms, including BIC cavities, parity-time symmetry coupled cavities, and photonic topological cavities, are introduced for laser applications. These various cavity designs and underlying physics in single and array nanocavities are useful for the practical implementation of promising nanophotonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA