Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Phylogenet Evol ; 182: 107736, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36805473

RESUMO

Hybridization is recognized as a major force in species evolution and biodiversity formation, generally leading to the origin and differentiation of new species. Multiple hybridization events cannot easily be reconstructed, yet they offer the potential to study a number of evolutionary processes. Here, we used nuclear expressed sequence tag-simple sequence repeat and large-scale single nucleotide polymorphism variation data, combined with niche analysis, to investigate the putative independent hybridization events in Notopterygium, a group of perennial herb plants endemic to China. Population genomic analysis indicated that the four studied species are genetically well-delimited and that N. forrestii and N. oviforme have originated by hybridization. According to Approximate Bayesian Computation, the best-fit model involved the formation of N. forrestii from the crossing of N. franchetii and N. incisum, with N. forrestii further backcrossing to N. franchetii to form N. oviforme. The niche analyses indicated that niche divergence [likely triggered by the regional climate changes, particularly the intensification of East Asian winter monsoon, and tectonic movements (affecting both Qinghai-Tibetan Plateau and Qinling Mountains)] may have promoted and maintained the reproductive isolation among hybrid species. N. forrestii shows ecological specialization with respect to their parental species, whereas N. oviforme has completely shifted its niche. These results suggested that the climate and environmental factors together triggered the two-step hybridization of the East Asia herb plants. Our study also emphasizes the power of genome-wide SNPs for investigating suspected cases of hybridization, particularly unravelling old hybridization events.


Assuntos
Apiaceae , Hibridização Genética , Apiaceae/genética , Teorema de Bayes , Ecossistema , Metagenômica , Filogenia
2.
Mol Phylogenet Evol ; 189: 107928, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714444

RESUMO

The Irano-Turanian region is one of the world's richest floristic regions and the centre of diversity for numerous xerophytic plant lineages. However, we still have limited knowledge on the timing of evolution and biogeographic history of its flora, and potential drivers of diversification remain underexplored. To fill this knowledge gap, we focus on the Eurasian genus Jurinea (ca. 200 species), one of the largest plant radiations that diversified in the region. We applied a macroevolutionary integrative approach to explicitly test diversification hypotheses and investigate the relative roles of geography vs. ecology and niche conservatism vs. niche lability in speciation processes. To do so, we gathered a sample comprising 77% of total genus richness and obtained data about (1) its phylogenetic history, recovering 502 nuclear loci sequences; (2) growth forms; (3) ecological niche, compiling data of 21 variables for more than 2500 occurrences; and (4) paleoclimatic conditions, to estimate climatic stability. Our results revealed that climate was a key factor in the evolutionary dynamics of Jurinea. The main diversification and biogeographic events that occurred during past climate changes, which led to colder and drier conditions, are the following: (1) the origin of the genus (10.7 Ma); (2) long-distance dispersals from the Iranian Plateau to adjacent regions (∼7-4 Ma); and (3) the diversification shift during Pliocene-Pleistocene Transition (ca. 3 Ma), when net diversification rate almost doubled. Our results supported the pre-adaptation hypothesis, i.e., the evolutionary success of Jurinea was linked to the retention of the ancestral niche adapted to aridity. Interestingly, the paleoclimatic analyses revealed that in the Iranian Plateau long-term climatic stability favoured old-lineage persistence, resulting in current high species richness of semi-arid and cold adapted clades; whereas moderate climate oscillations stimulated allopatric diversification in the lineages distributed in the Circumboreal region. In contrast, growth form lability and high niche disparity among closely related species in the Central Asian clade suggest adaptive radiation to mountain habitats. In sum, the radiation of Jurinea is the result of both adaptive and non-adaptive processes influenced by climatic, orogenic and ecological factors.


Assuntos
Asteraceae , Evolução Biológica , Filogenia , Irã (Geográfico) , Filogeografia
3.
Conserv Biol ; 37(4): e14069, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36751969

RESUMO

Over the past 40 years, the climate has been changing and human disturbance has increased in the vast Qinghai-Tibet Plateau (QTP). These 2 factors are expected to affect the distribution of a large number of endemic vertebrate species. However, quantitative relationships between range shifts and climate change and human disturbance of these species in the QTP have rarely been evaluated. We used occurrence records of 19 terrestrial vertebrate species (birds, mammals, amphibians, and reptiles) occurring in the QTP from 1980 to 2020 to quantify the effects of climate change and anthropogenic impacts on the distribution of these 4 taxonomic groups and estimated species range changes in each species. The trend in distribution changes differed among the taxonomic groups, although, generally, ranges shifted to central QTP. Climate change contributed more to range variation than human disturbance (the sum of the 4 climatic variables contributed more than the sum of the 4 human disturbance variables for all 4 taxonomic groups). Suitable geographic range increased for most mammals, amphibians, and reptiles (+27.6%, +18.4%, and +27.8% on average, respectively), whereas for birds range decreased on average by 0.9%. Quantitative evidence for climate change and human disturbance associations with range changes for endemic vertebrate species in the QTP can provide useful insights into biodiversity conservation under changing environments.


En los últimos 40 años, el clima ha cambiado y las perturbaciones humanas han aumentado en la vasta meseta Qinghai-Tíbet (MQT). Se espera que estos dos factores afecten la distribución de un gran número de especies de vertebrados endémicos. Sin embargo, las relaciones cuantitativas entre los cambios del área de distribución y el cambio climático y las perturbaciones humanas en estas especies de la MQT han sido poco evaluadas. Utilizamos los registros de presencia de 19 especies de vertebrados terrestres (aves, mamíferos, anfibios y reptiles) de la MQT tomados entre 1980 y 2020 para cuantificar los efectos del cambio climático y los impactos antropogénicos sobre la distribución de estos cuatro grupos taxonómicos y estimar los cambios en el área de distribución de cada especie. La tendencia en los cambios de distribución difirió entre los grupos taxonómicos, aunque, en general, las áreas de distribución se desplazaron hacia el centro de la MQT. El cambio climático contribuyó más a la variación del área de distribución que las perturbaciones humanas (la suma de las cuatro variables climáticas contribuyó más que la suma de las cuatro variables de perturbaciones humanas para los cuatro grupos taxonómicos). El área de distribución geográfica adecuada aumentó para la mayoría de los mamíferos, anfibios y reptiles (+27.6%, +18.4% y +27.8% en promedio, respectivamente), mientras que para las aves disminuyó en promedio un 0.9%. Las pruebas cuantitativas de la asociación del cambio climático y las perturbaciones humanas con los cambios en el área de distribución de las especies vertebradas endémicas de la MQT pueden aportar información útil para la conservación de la biodiversidad en entornos cambiantes.


Assuntos
Efeitos Antropogênicos , Mudança Climática , Animais , Humanos , Tibet , Conservação dos Recursos Naturais , Vertebrados , Mamíferos
4.
Conserv Biol ; 34(5): 1142-1151, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31994789

RESUMO

Reviews that summarize the genetic diversity of plant species in relation to their life history and ecological traits show that forest trees have more genetic diversity at population and species levels than annuals or herbaceous perennials. In addition, among-population genetic differentiation is significantly lower in trees than in most herbaceous perennials and annuals. Possible reasons for these differences between trees and herbaceous perennials and annuals have not been discussed critically. Several traits, such as high rates of outcrossing, long-distance pollen and seed dispersal, large effective population sizes (Ne ), arborescent stature, low population density, longevity, overlapping generations, and occurrence in late successional communities, may make trees less sensitive to genetic bottlenecks and more resistant to habitat fragmentation or climate change. We recommend that guidelines for genetic conservation strategies be designed differently for tree species versus other types of plant species. Because most tree species fit an LH scenario (low [L] genetic differentiation and high [H] genetic diversity), tree seeds could be sourced from a few populations distributed across the species' range. For the in situ conservation of trees, translocation is a viable option to increase Ne . In contrast, rare herbaceous understory species are frequently HL (high differentiation and low diversity) species. Under the HL scenario, seeds should be taken from many populations with high genetic diversity. In situ conservation efforts for herbaceous plants should focus on protecting habitats because the typically small populations of these species are vulnerable to the loss of genetic diversity. The robust allozyme genetic diversity databases could be used to develop conservation strategies for species lacking genetic information. As a case study of reforestation with several tree species in denuded areas on the Korean Peninsula, we recommend the selection of local genotypes as suitable sources to prevent adverse effects and to insure the successful restoration in the long term.


Incorporación de diferencias de diversidad genética entre árboles y plantas herbáceas en estrategias de conservación Resumen Las revisiones que resumen la diversidad genética de las plantas en relación con sus características ecológicas y biológicas muestran que los árboles forestales tienen más diversidad genética a nivel de población y de especie que las plantas anuales o las perennes herbáceas. Sumado a esto, la diferenciación genética entre poblaciones es significativamente más baja en los árboles que en la mayoría de las perennes herbáceas y las anuales. Hasta la fecha no se han discutido críticamente las posibles explicaciones de estas diferencias entre los árboles y las perennes herbáceas y las plantas anuales. Varias características, como las tasas altas de alogamia, la dispersión a gran distancia de polen y semillas, el gran tamaño de la población efectiva (Ne ), la estatura arbórea, la baja densidad poblacional, la longevidad, el solapamiento de generaciones y la presencia dentro de comunidades sucesionales tardías, pueden generar en los árboles una menor sensibilidad a los cuellos de botella genéticos y una mayor resistencia a la fragmentación del hábitat o al cambio climático. Recomendamos que las directrices para las estrategias de conservación genética estén diseñadas de manera diferente para las especies arbóreas que para otro tipo de plantas. Ya que la mayoría de las especies arbóreas encajan dentro de un escenario LH (baja [L] diferenciación genética y alta [H] diversidad genética), las semillas de los árboles podrían tomarse de unas cuantas poblaciones dispersas a lo largo del área de distribución de la especie. Por lo anterior, para la conservación in situ de los árboles, la translocación es una opción viable para incrementar la Ne . Al contrario de esta situación, las especies herbáceas raras del sotobosque con frecuencia son especies HL (alta diferenciación y baja diversidad). En el escenario HL, las semillas deberían ser recolectadas de muchas poblaciones con diversidad genética alta y los esfuerzos de conservación in situ para las plantas herbáceas deberían enfocarse en la protección del hábitat ya que las poblaciones típicamente pequeñas de estas especies son vulnerables a la pérdida de la diversidad genética. Las robustas bases de datos de diversidad genética aloenzimática podrían usarse para desarrollar estrategias de conservación para las especies que carecen de información genética. Como caso de estudio de reforestación con varias especies arbóreas en áreas deforestadas de la Península de Corea, recomendamos la selección de genotipos locales como fuente adecuada para prevenir los efectos adversos y para asegurar la restauración exitosa a largo plazo.


Assuntos
Conservação dos Recursos Naturais , Árvores , Ecossistema , Variação Genética , Plantas , Árvores/genética
5.
Mol Phylogenet Evol ; 137: 313-332, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059792

RESUMO

Classification of tribe Cardueae in natural subtribes has always been a challenge due to the lack of support of some critical branches in previous phylogenies based on traditional Sanger markers. With the aim to propose a new subtribal delimitation, we applied a Hyb-Seq approach to a set of 76 Cardueae species representing all subtribes and informal groups defined in the tribe, targeting 1061 nuclear conserved orthology loci (COS) designed for Compositae and obtaining chloroplast coding regions as by-product of off-target reads. For the extraction of the target nuclear data, we used two strategies, PHYLUCE and HybPiper, and 776 and 1055 COS loci were recovered with each of them, respectively. Additionally, 87 chloroplast genes were assembled and annotated. With three datasets, phylogenetic relationships were reconstructed using both concatenation and coalescent approaches. Phylogenetic analyses of the nuclear datasets fully resolved virtually all nodes with very high support. Nuclear and plastid tree topologies are mostly congruent with a very limited number of incongruent nodes. Based on the well-solved phylogenies obtained, we propose a new taxonomic scheme of 12 monophyletic and morphologically consistent subtribes: Carlininae, Cardopatiinae, Echinopsinae, Dipterocominae (new), Xerantheminae (new), Berardiinae (new), Staehelininae (new), Onopordinae (new), Carduinae (redelimited), Arctiinae (new), Saussureinae (new), and Centaureinae. In addition, we further updated the temporal framework for origin and diversification of these subtribes. Our results highlight the power of Hyb-Seq over Sanger sequencing of a few DNA markers in solving phylogenetic relationships of traditionally difficult groups.


Assuntos
Asteraceae/classificação , Asteraceae/genética , Núcleo Celular/genética , DNA de Plantas/genética , Variação Genética , Filogenia , Plastídeos/genética , Análise de Sequência de DNA , Calibragem , Bases de Dados Genéticas , Geografia , Fatores de Tempo
6.
Heredity (Edinb) ; 123(2): 242-263, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30742051

RESUMO

Historical geological and climatic events are the most important drivers of population expansions/contractions, range shifts, and interspecific divergence in plants. However, the species divergence and spatiotemporal population dynamics of alpine cold-tolerant herbal plants in the high-altitude Qinghai-Tibetan Plateau (QTP) and adjacent areas remain poorly understood. In this study, we investigated population evolutionary history of four endangered Notopterygium herb species in the QTP and adjacent regions. We sequenced 10 nuclear loci, 2 mitochondrial DNA regions, and 4 chloroplast DNA regions in a total of 72 natural populations from the 4 species, and tested the hypothesis that the population history of these alpine herbs was markedly affected by the Miocene-Pliocene QTP uplifts and Quaternary climatic oscillations. We found that the four Notopterygium species had generally low levels of nucleotide variability within populations. Molecular dating and isolation-with-migration analyses suggested that Notopterygium species diverged ~1.74-7.82 million years ago and their differentiation was significantly associated with recent uplifts of the eastern margin of the QTP. In addition, ecological niche modeling and population history analysis showed that N. incisum and N. franchetii underwent considerable demographic expansions during the last glacial period of the Pleistocene, whereas a demographic contraction and a expansion occurred for N. forrestii and N. oviforme during the antepenultimate interglacial period and penultimate glacial period, respectively. These findings highlight the importance of geological and climatic changes during the Miocene-Pliocene and Pleistocene as causes of species divergence and changes in population structure within cold-tolerant herbs in the QTP biodiversity hotspot.


Assuntos
Plantas Medicinais/genética , Plantas/genética , Biodiversidade , Evolução Biológica , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Ecossistema , Variação Genética/genética , Especificidade da Espécie , Tibet
7.
BMC Evol Biol ; 18(1): 20, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426277

RESUMO

BACKGROUND: Mountains have not only provided refuge for species, but also offered dispersal corridors during the Neogene and Quaternary global climate changes. Compared with a plethora of studies on the refuge role of China's mountain ranges, their dispersal corridor role has received little attention in plant phylogeographic studies. Using phylogeographic data of Eomecon chionantha Hance (Papaveraceae), this study explicitly tested whether the Nanling Mountains, which spans from west to east for more than 1000 km in subtropical China, could have functioned as a dispersal corridor during the late Quaternary in addition to a glacial refugium. RESULTS: Our analyses revealed a range-wide lack of phylogeographic structure in E. chionantha across three kinds of molecular markers [two chloroplast intergenic spacers, nuclear ribosomal internal transcribed spacer (nrITS), and six nuclear microsatellite loci]. Demographic inferences based on chloroplast and nrITS sequences indicated that E. chionantha could have experienced a strong postglacial range expansion between 6000 and 1000 years ago. Species distribution modelling showed that the Nanling Mountains and the eastern Yungui Plateau were the glacial refugia of E. chionantha. Reconstruction of dispersal corridors indicated that the Nanling Mountains also have acted as a corridor of population connectivity for E. chionantha during the late Quaternary. CONCLUSIONS: Our results suggest that the Nanling Mountains may acted dual roles as a dispersal corridor in east-west direction and as a glacial refugium in subtropical China during the late Quaternary. The population connectivity mediated by the mountain range and a strong postglacial range expansion are the most likely reasons for the lack of phylogeographic structure in E. chionantha. The hypothesis of dual roles of the mountain range presented here sheds new insights into the phylogeographic patterns of organisms in subtropical China.


Assuntos
Ecossistema , Camada de Gelo , Papaveraceae/classificação , Filogeografia , Refúgio de Vida Selvagem , Clima Tropical , Sequência de Bases , Teorema de Bayes , China , Cloroplastos/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Variação Genética , Geografia , Haplótipos/genética , Repetições de Microssatélites/genética , Papaveraceae/genética , Filogenia , Tamanho da Amostra
8.
Mol Phylogenet Evol ; 125: 62-77, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29524653

RESUMO

According to the present taxonomical treatment, Paeonia subsect. Delavayanae consists of only two species (P. delavayi and P. ludlowii) endemic to the Himalayan-Hengduan Mountains. Although P. ludlowii can be distinguished from P. delavayi on the basis of a series of morphological characters, the species delimitation remains controversial because the more widespread one, P. delavayi, exhibits considerable morphological diversity. Both chloroplast DNA markers and nuclear microsatellites or simple sequence repeats (nSSR) are used herein to reveal genetic diversity and relationships of the two taxa included in this subsection, and ecological niche modeling (ENM) is employed to get insights into their paleodistribution. Our results show that genetic boundaries between the two currently recognized species are unclear, probably due to recent divergence. Paeonia ludlowii is budding from P. delavayi, probably by genetic isolation but also by shifting its niche to the harsher upland Tibetan conditions. Paeonia delavayi itself would be, however, under active speciation, showing significant genetic differentiation and morphological diversity. Whereas P. ludlowii would have endured the Pleistocene glacial periods by in situ persistence in local, small refugia, a 'dual' model seems to apply for P. delavayi (in situ persistence and retreat to refugia). The rarity of P. ludlowii and high evolutionary potential of P. delavayi imply high priority for in situ conservation of both taxa. The Himalayan-Hengduan Mountains are an ideal arena for differentiation within subsect. Delavayanae of Paeonia, by means of expansions/contractions/displacements, vertical migrations, and local survival/extinctions in response to the Neogene climate fluctuations and geological changes.


Assuntos
Genética Populacional , Paeonia/genética , Árvores/genética , Teorema de Bayes , Ecossistema , Marcadores Genéticos , Variação Genética , Repetições de Microssatélites , Filogenia , Filogeografia , Dinâmica Populacional , Análise de Componente Principal
9.
Mol Phylogenet Evol ; 92: 243-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26151220

RESUMO

Mountains of continental Greece are one of the main Mediterranean biodiversity hotspots, very rich in endemic species. The speciation in this area might have resulted from two main factors: a complex orography and its role as a refugium during past glaciations. We have investigated genetic diversity and population structure for a group of narrow endemics of Centaurea subsect. Phalolepis, with three main goals: to investigate population structure of these narrow endemics, to check whether patterns of genetic variation are in agreement with recognized species boundaries, and to get insights into the process of diversification within this group. Fifteen populations belonging to seven species were genotyped using cpDNA (rpl32-trnL region) sequences and nuclear microsatellites (eight loci). SSR were used to assess genetic variability, to analyse molecular variance, to identify genetic barriers, to estimate recent and historical gene flow, and to carry out a model-based Bayesian clustering. Analysis of cpDNA was used to construct a haplotype network. Despite being narrow endemics, all the studied species show moderate to high SSR genetic diversity. Genetic isolation of populations is very high, with no current gene flow among them. Patterns of genetic structure indicate that there are more genetic clusters than there are currently recognized taxa. Genetic data suggest that isolation in mountain ranges and subsequent allopatric speciation would be the main driver of diversification in the group; the refugial nature of the mountains of continental Greece has allowed the maintenance of high within-population genetic diversity.


Assuntos
Evolução Biológica , Centaurea/genética , Ecossistema , Teorema de Bayes , Fluxo Gênico , Loci Gênicos , Variação Genética , Genética Populacional , Geografia , Grécia , Haplótipos/genética , Endogamia , Repetições de Microssatélites/genética , Filogenia
10.
Am J Bot ; 101(6): 946-956, 2014 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907251

RESUMO

• Premise of the study: Geographic isolation due to discontinuities of suitable habitat may have significant effects on the genetic structure of plant populations. Even within a few kilometers, physical barriers to gene flow may lead to considerable genetic differentiation among populations.• Methods: Sedum ussuriense is a boreal species that in Korea occurs only in four valleys separated by mountain ranges in Juwangsan National Park and its vicinity (a range of ∼15 km). Its congener S. kamtschaticum, by contrast, co-occurs in the four valleys but also on the intervening mountains. Using 12 allozyme loci, we comparatively assessed genetic variability and structure in 12 population pairs of the two stonecrops.• Key results: While we found high and comparable levels of within-population genetic variation for the two species, among-population divergence was significantly higher in S. ussuriense (FST = 0.261 vs. FST = 0.165). Sedum ussuriense also showed a much higher percentage of among-valley variation (19%) than S. kamtschaticum (4%).• Conclusions: High levels of genetic diversity in the two Sedum species are consistent with the previous hypothesis that mountains of the Korean Peninsula served as glacial refugia for many boreal species. Given that the two congeners have similar life-history traits, the lower among-population differentiation in S. kamtschaticum is attributable to its higher abundance and more continuous distribution in the study area. This study confirms the central role of geographic isolation in the genetic structure of plant species even at very small scales.


Assuntos
Variação Genética , Genética Populacional , Sedum/classificação , Fluxo Gênico , Geografia , República da Coreia , Sedum/genética
11.
J Hered ; 105(5): 690-701, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25124813

RESUMO

Comparative studies on clonal and genetic structure between ecologically contrasting congeners may provide valuable insights into the mechanisms promoting the maintenance of genetic diversity in clonal plant species. Polygonatum stenophyllum has long rhizomes (ca. 30-40 cm long) and largely occurs on sandy soils in open river banks, whereas its congener Polygonatum inflatum has short ones (ca. 5-10 cm long) and occurs on humic soils under deciduous forests. Using 21 allozyme loci, we comparatively assessed levels of clonal and genetic diversity in the 2 clonal species. Seven populations of P. stenophyllum consisted of single clones, and levels of within-population clonal and genetic variation were considerably lower than those of P. inflatum. However, when samples were pooled, P. stenophyllum harbored higher genetic variation than P. inflatum, which is due to higher among-population genetic differentiation in the former species compared with the latter (FST=0.636 vs. FST=0.165). Our data suggest that populations of P. stenophyllum have been mainly founded by a single seed or rhizome (through river water) or by a few seeds, whereas populations of P. inflatum would have been established through multiple, repeated seedling recruitment. Moderate levels of genetic diversity in a population of P. stenophyllum located at the foot of the Baekdudaegan Mountains and in all the populations of P. inflatum are consistent with the previous hypothesis that these mountains served as a glacial refugium for many boreal species of the Korean Peninsula.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional , Polygonatum/genética , Conservação dos Recursos Naturais , Loci Gênicos , Genótipo , Filogeografia , Polygonatum/classificação , República da Coreia
12.
Genes (Basel) ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927718

RESUMO

Tortula atrovirens (Sm.) Lindb. is an important component of biological soil crusts and possesses an extraordinary tolerance against desiccation in dryland habitats. However, knowledge of the organelle genome of this desiccation-tolerant (DT) moss is still lacking. Here, we assembled the first reported Tortula organelle genome and conducted a comprehensive analysis within the Pottiaceae family. T. atrovirens exhibited the second largest chloroplast genome (129,646 bp) within the Pottiaceae, whereas its mitogenome (105,877 bp) and those of other mosses were smaller in size compared to other land plants. The chloroplast and mitochondrial genomes of T. atrovirens were characterized by the expansion of IR boundaries and the absence of homologous recombination-mediated by large repeats. A total of 57 RNA editing sites were detected through mapping RNA-seq data. Moreover, the gene content and order were highly conserved among the Pottiaceae organelle genomes. Phylogenetic analysis showed that bryophytes are paraphyletic, with their three lineages (hornworts, mosses, and liverworts) and vascular plants forming successive sister clades. Timmiella anomala is clearly separated from the monophyletic Pottiaceae, and T. atrovirens is closely related to Syntrichia filaris within the Pottioideae. In addition, we detected four hypervariable regions for candidate-molecular markers. Our findings provide valuable insights into the organelle genomes of T. atrovirens and the evolutionary relationships within the Pottiaceae family, facilitating future discovery of DT genetic resources from bryophytes.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Filogenia , Dessecação , Briófitas/genética , Genoma de Planta
13.
Am J Bot ; 100(11): 2231-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24186960

RESUMO

PREMISE OF THE STUDY: Drosera peltata var. nipponica, an element of the East Asia warm-temperate vegetation, and D. rotundifolia, a widely distributed boreal species, reach one of their northernmost and southernmost limits, respectively, on the Korean Peninsula. Because the Last Glacial Maximum (LGM)-Holocene dynamics of warm-temperate and boreal paleovegetation differed considerably on the Peninsula, the population history of these two sundews is expected to be different, leaving differential imprints in their genetic structure. METHODS: We investigated population genetic structure of D. peltata var. nipponica and D. rotundifolia in South Korea (10 populations of each for 20 allozyme loci) to infer their population history in this region. In addition, we compared the genetic variation harbored in the two sundews to those reported for other carnivorous and wetland plants. KEY RESULTS: Drosera peltata var. nipponica showed no genetic diversity, whereas D. rotundifolia exhibited extremely low within-population variation (He = 0.005) and considerable among-population divergence (FST = 0.817). CONCLUSIONS: Our results suggest that extant populations of D. peltata var. nipponica likely originated from a single ancestral population from southern Japan or southern China through postglacial dispersal. On the contrary, D. rotundifolia probably survived the LGM in situ, with extant populations derived from either one or several small source populations. We argue that separate conservation strategies should be employed, given that the two taxa have different ecological and demographic traits and harbor different levels of genetic diversity.


Assuntos
Conservação dos Recursos Naturais , Drosera/genética , Variação Genética , Isoenzimas , República da Coreia , Especificidade da Espécie
14.
Am J Bot ; 100(11): 2240-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24190948

RESUMO

PREMISE OF THE STUDY: We posed two hypotheses for broad scenarios of postglacial recolonization of Korea by the warm-temperate vegetation: (1) that extant Korean populations are derived from a single refugium, or (2) that they are derived from multiple refugia. We chose a homosporous fern typical of East Asian warm-temperate vegetation, Selliguea hastata, to test which of the two scenarios is more likely and to check whether Japan contained putative glacial refugia. METHODS: Using 16 allozyme loci, we obtained genotypes of 756 individuals from 20 populations, representative of the whole distribution area in Korea (including Jeju Island), Japan, and Taiwan. We assessed genetic variability within and among populations, Wright's F-statistics, and conducted analysis of molecular variance, model-based Bayesian clustering, and bottleneck tests. KEY RESULTS: We found no allozyme variation within populations of S. hastata in mainland Korea, whereas genetic polymorphism was detected for populations from Jeju Island, Japan (in particular a population from southeastern Shikoku), and Taiwan. The levels of inbreeding within populations were high, consistent with the potential of S. hastata for intragametophytic selfing. CONCLUSIONS: Data on allelic richness together with Bayesian clustering methods suggest a pattern of postglacial recolonization of mainland Korea from a single refugium, probably located either on Jeju Island or in Japan. Jeju Island should merit the highest priority for conservation biogeography, as it played a role as a Quaternary refugium for arctic-alpine, boreal, temperate as well as warm-temperate plants, as suggested here.


Assuntos
Variação Genética , Polypodiaceae/genética , Teorema de Bayes , Conservação dos Recursos Naturais , Eletroforese , Endogamia , Ilhas , Isoenzimas/genética , Isoenzimas/metabolismo , Japão , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polypodiaceae/metabolismo , República da Coreia , Análise de Sequência de DNA , Taiwan
15.
J Hered ; 104(2): 263-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23109721

RESUMO

It is generally believed that the members of Ophioglossaceae have subterranean, potentially bisexual gametophytes, which favor intragametophytic selfing. In Ophioglossaceae, previous allozyme studies revealed substantial inbreeding within Botrychium species and Mankyua chejuense. However, little is known about the mating system in species of the genus Ophioglossum. Molecular marker analyses can provide insights into the relative occurrence of selfing versus cross-fertilization in the species of Ophioglossum. We investigated allozyme variation in 8 Korean populations of the homosporous fern Ophioglossum vulgatum to infer its mating system and to get some insight into the population-establishment history in South Korea. We detected homozygous genotypes for alternative alleles at several loci, which suggest the occurrence of intragametophytic self-fertilization. Populations harbor low within-population variation (% P = 7.2, A = 1.08, and H (e) = 0.026) and a high among-population differentiation (F (ST) = 0.733). This, together with the finding that alternative alleles were fixed at several loci, suggests that the number and size of populations of O. vulgatum might have been severely reduced during the last glaciation (i.e., due to its in situ persistence in small, isolated refugia). The combined effects of severe random genetic drift and high rates of intragametophytic selfing are likely responsible for the genetic structure displayed by this homosporous fern. Its low levels of genetic diversity in South Korea justify the implementation of some conservation measures to ensure its long-term preservation.


Assuntos
Gleiquênias/genética , Variação Genética , Alelos , Análise por Conglomerados , Enzimas/genética , Evolução Molecular , Frequência do Gene , Loci Gênicos , Genética Populacional , Genótipo , Isoenzimas , Proteínas de Plantas/genética , Polimorfismo Genético , Reprodução , República da Coreia
16.
J Hered ; 104(2): 248-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23125404

RESUMO

It is thought that the warm-temperate vegetation of Korea, which at present is limited to southern coastal areas, was founded by individuals from glacial refugia putatively located in southern Japan and/or southern China. Two scenarios of postglacial recolonization can be hypothesized: 1) extant Korean populations are derived from multiple source populations or, 2) they originated from a single source. To test which of these scenarios is more likely, we surveyed patterns of genetic diversity in 3 congeneric terrestrial orchids that are typical of Korean warm-temperate vegetation, Calanthe discolor, C. sieboldii, and C. reflexa. In total, we studied 14 populations with 17 allozyme loci. To complement the study, we also tested the 2 scenarios with previous population-genetics data reported for other warm-temperate plant species native to Korea. Levels of genetic variation in the 3 Calanthe species were substantially higher than those typical of allozyme-based studies in other terrestrial orchid species, which clearly suggest a pattern of postglacial recolonization fitting the first scenario. However, previous studies with native Korean species showed equivocal patterns and suggest conflicting scenarios. The Calanthe species studied here and the previous genetic surveys conducted on other species indicate that the establishment of contemporary warm-temperate vegetation in Korea has been diverse since deglaciation. From a conservation perspective, C. reflexa should be regarded as endangered in Korea, needing special attention to preserve its current genetic diversity and to prevent further decreases in population sizes.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Orchidaceae/genética , Alelos , Conservação dos Recursos Naturais , Frequência do Gene , Loci Gênicos , Genética Populacional , Geografia , Endogamia , Isoenzimas/genética , Orchidaceae/classificação , Filogenia , Densidade Demográfica , Dinâmica Populacional , República da Coreia , Temperatura
17.
Methods Mol Biol ; 2703: 173-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646945

RESUMO

An updated (and now online) version of the former chromosome database of tribe Delphinieae (Ranunculaceae) is presented ( http://www.delphinieae.online ). This new version is the result of an accurate, exhaustive literature and Internet research, by adding chromosome counts and all related karyological information for the genera Aconitum L., Gymnaconitum (Stapf) Wei Wang & Z. D. Chen, Delphinium L. (including Staphisagria Spach), Consolida (DC.) S. F. Gray and Aconitella Spach, accumulated during the approximately last 25 years and that comprise worldwide published data from 1889 to 2021. The Delphinieae Chromosome Database (DCDB) (last updated 31.12.2021) contains a total number of 3435 reports belonging to 425 species (503 taxa), which represents 48.6% of the total species of the tribe (an increase of c. 213% and 32% compared with the 1097 and 2598 reports gathered in the 1999 and 2016 versions, respectively). This increase is due both to chromosome research progress and to improved information capture system. Moreover, recent taxonomic advances, synonymization, and new phylogenetic criteria have also been considered.The DCDB database provides the most complete currently available information on published chromosome numbers, ploidy-level estimates, and other karyological data of Delphinieae, and it is aimed to be useful for the building of cytotaxonomical databases and for specific research ongoing projects of systematics and evolution of Ranunculaceae. DCDB includes two levels of taxonomic resolution, published name (original and standardized form) and database accepted name (based on either Plants of the World - POWO or expert specialist criteria), as well as the geographic origin of each count (country, locality, geographic coordinates, elevation, or ecological information when reported in the original publication), associated karyological data if originally provided (studied material type, graphic information, chromosome measures and formulas, satellites, B chromosomes, other cytogenetic techniques used, etc.), voucher information and reference (with DOI and other links to access the original document). An effort to check the original sources and to search in grey literature allowed to indicate the counts that appear to be registered twice.


Assuntos
Ranunculaceae , Filogenia , Análise Citogenética , Bases de Dados Factuais , Internet
18.
Ecol Evol ; 13(3): e9926, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006890

RESUMO

Increased access to genome-wide data provides new opportunities for plant conservation. However, information on neutral genetic diversity in a small number of marker loci can still be valuable because genomic data are not available to most rare plant species. In the hope of bridging the gap between conservation science and practice, we outline how conservation practitioners can more efficiently employ population genetic information in plant conservation. We first review the current knowledge about neutral genetic variation (NGV) and adaptive genetic variation (AGV) in seed plants, regarding both within-population and among-population components. We then introduce the estimates of among-population genetic differentiation in quantitative traits (Q ST) and neutral markers (F ST) to plant biology and summarize conservation applications derived from Q ST-F ST comparisons, particularly on how to capture most AGV and NGV on both in-situ and ex-situ programs. Based on a review of published studies, we found that, on average, two and four populations would be needed for woody perennials (n = 18) to capture 99% of NGV and AGV, respectively, whereas four populations would be needed in case of herbaceous perennials (n = 14). On average, Q ST is about 3.6, 1.5, and 1.1 times greater than F ST in woody plants, annuals, and herbaceous perennials, respectively. Hence, conservation and management policies or suggestions based solely on inference on F ST could be misleading, particularly in woody species. To maximize the preservation of the maximum levels of both AGV and NGV, we suggest using maximum Q ST rather than average Q ST. We recommend conservation managers and practitioners consider this when formulating further conservation and restoration plans for plant species, particularly woody species.

19.
Plants (Basel) ; 12(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514329

RESUMO

Cities are often hotspots for biological invasions, showing much higher percentages of alien species than non-urbanized settings. The reasons are multiple and are mostly related to two main factors: their heterogeneous, highly disturbed habitats and their many gateways that allow alien species introduction (e.g., airports, roads, train stations, or gardens). In addition to being a sink of biological invasions, cities can also be a source of the spread of alien species into surrounding landscapes, which adds further complexity to this issue. Herein, we are presenting the results of a five-year survey of the alien flora of Montjuïc, the largest urban hill in Barcelona (Spain). In just about 3.4 km2, we recorded up to 247 alien plant taxa, a figure much higher than those of many other Mediterranean cities and which clearly points to the role of Montjuïc as a hotspot for alien plants. The comparison with the alien flora of its surrounding region (coastal Catalonia) suggests that the alien flora of Montjuïc would have become enriched through many immigration episodes from close geographic areas. The hill, however, would have also acted as a source of the spread of alien plants, and indeed, some species have not been detected yet beyond the confines of Montjuïc. This study aims to be a key tool to ensure early detection and also to develop appropriate management and/or eradication actions.

20.
J Hered ; 103(5): 692-702, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563130

RESUMO

We hypothesized that the main Korean mountain ranges provided many refugia for boreal plant species, where they likely found relatively stable habitats and maintained large population sizes. Under this scenario, high levels of genetic variation and low degree of differentiation among populations within these species were anticipated. To test this hypothesis, we examined levels of allozyme diversity (17 loci) in 12 populations of the common terrestrial montane orchid Oreorchis patens from the main ranges in Korea and 4 populations of its rare congener O. coreana, which is restricted to the Korean island of Jeju. As expected, O. patens harbored high levels of genetic variation within populations (%P = 62.8, A = 1.96, H (o) = 0.211, and H (e) = 0.237). Allele frequency differences among populations were low (F (ST) = 0.075), and the species also displayed a significant correlation between pairwise genetic differentiation and geographical distance. All these results suggest that extant populations were founded by multiple genetically diverse individuals and that most of this initial diversity would have been maintained in the stable mountainous conditions during Quaternary climatic oscillations. In contrast, we were unable to detect any genetic diversity in O. coreana, suggesting that contemporary populations likely originated from a single ancestral source population that had lost all genetic variability. From a long-term conservation genetics perspective, extreme rarity and small population sizes, coupled with its apparent genetic uniformity, place O. coreana at a high risk of extinction. Thus, both in situ and ex situ conservation efforts should be of particular importance for this species.


Assuntos
Conservação dos Recursos Naturais , Evolução Molecular , Variação Genética , Orchidaceae/genética , Clonagem Molecular , Frequência do Gene , Endogamia , Orchidaceae/classificação , Filogeografia , República da Coreia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA