RESUMO
Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio) and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability), we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters' periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations.
Assuntos
Bactérias/genética , Bactérias/metabolismo , Consórcios Microbianos/fisiologia , Interações Microbianas/fisiologia , Aminoácidos/metabolismo , Biologia Computacional , Simulação por Computador , GenótipoRESUMO
BACKGROUND: Interstitial lung disease (ILD) is the most common cause of death in systemic sclerosis. To date, the progression of systemic sclerosis-associated ILD is judged by the accrual of lung damage on CT and pulmonary function tests. However, diagnostic tools to assess disease activity are not available. Here, we tested the hypothesis that quantification of fibroblast activation by PET-CT using a 68Ga-labelled selective inhibitor of prolyl endopeptidase FAP (68Ga-FAPI-04) would correlate with ILD activity and disease progression in patients with systemic sclerosis-associated ILD. METHODS: Between Sept 10, 2018, and April 8, 2020, 21 patients with systemic sclerosis-associated ILD confirmed by high-resolution CT (HRCT) within 12 months of inclusion and with onset of systemic sclerosis-associated ILD within 5 years or signs of progressive ILD and 21 controls without ILD were consecutively enrolled. All participants underwent 68Ga-FAPI-04 PET-CT imaging and standard-of-care procedures, including HRCT and pulmonary function tests at baseline. Patients with systemic sclerosis-associated ILD were followed for 6 months with HRCT and pulmonary function tests. We compared baseline 68Ga-FAPI-04 PET-CT uptake with standard diagnostic tools and predictors of ILD progression. The association of 68Ga-FAPI-04 uptake with changes in forced vital capacity was analysed using mixed-effects models. Follow-up 68Ga-FAPI-04 PET-CT scans were obtained in a subset of patients treated with nintedanib (follow-up between 6-10 months) to assess change over time. FINDINGS: 68Ga-FAPI-04 accumulated in fibrotic areas of the lungs in patients with systemic sclerosis-associated ILD compared with controls, with a median standardised uptake value (SUV) mean over the whole lung of 0·80 (IQR 0·60-2·10) in the systemic sclerosis-ILD group and 0·50 (0·40-0·50) in the control group (p<0·0001) and a mean whole lung maximal SUV of 4·40 (range 3·05-5·20) in the systemic sclerosis-ILD group compared with 0·70 (0·65-0·70) in the control group (p<0·0001). Whole-lung FAPI metabolic active volume (wlFAPI-MAV) and whole-lung total lesion FAPI (wlTL-FAPI) were not measurable in control participants, because no 68Ga-FAPI-04 uptake above background level was observed. In the systemic sclerosis-ILD group the median wlFAPI-MAV was 254·00 cm3 (IQR 163·40-442·30), and the median wlTL-FAPI was 183·60 cm3 (98·04-960·70). 68Ga-FAPI-04 uptake was higher in patients with extensive disease, with previous ILD progression, or high EUSTAR activity scores than in those with with limited disease, previously stable ILD, or low EUSTAR activity scores. Increased 68Ga-FAPI-04 uptake at baseline was associated with progression of ILD independently of extent of involvement on HRCT scan and the forced vital capacity at baseline. In consecutive 68Ga-FAPI-04 PET-CTs, changes in 68Ga-FAPI-04 uptake was concordant with the observed response to the fibroblast-targeting antifibrotic drug nintedanib. INTERPRETATION: Our study presents the first in-human evidence that fibroblast activation correlates with fibrotic activity and disease progression in the lungs of patients with systemic sclerosis-associated ILD and that 68Ga-FAPI-04 PET-CT might improve risk assessment of systemic sclerosis-associated ILD. FUNDING: German Research Foundation, Erlangen Anschubs-und Nachwuchsfinanzierung, Interdisziplinäres Zentrum für Klinische Forschung Erlangen, Bundesministerium für Bildung und Forschung, Deutsche Stiftung Systemische Sklerose, Wilhelm-Sander-Foundation, Else-Kröner-Fresenius-Foundation, European Research Council, Ernst-Jung-Foundation, and Clinician Scientist Program Erlangen.
RESUMO
Organisms need to adapt to changing environments and they do so by using a broad spectrum of strategies. These strategies include finding the right balance between expressing genes before or when they are needed, and adjusting the degree of noise inherent in gene expression. We investigated the interplay between different nutritional environments and the inhabiting organisms' metabolic and genetic adaptations by applying an evolutionary algorithm to an agent-based model of a concise bacterial metabolism. Our results show that constant environments and rapidly fluctuating environments produce similar adaptations in the organisms, making the predictability of the environment a major factor in determining optimal adaptation. We show that exploitation of expression noise occurs only in some types of fluctuating environment and is strongly dependent on the quality and availability of nutrients: stochasticity is generally detrimental in fluctuating environments and beneficial only at equal periods of nutrient availability and above a threshold environmental richness. Moreover, depending on the availability and nutritional value of nutrients, nutrient-dependent and stochastic expression are both strategies used to deal with environmental changes. Overall, we comprehensively characterize the interplay between the quality and periodicity of an environment and the resulting optimal deterministic and stochastic regulation strategies of nutrient-catabolizing pathways.
Assuntos
Adaptação Biológica , Meio Ambiente , Modelos Biológicos , Ruído , Fenômenos Fisiológicos Bacterianos , Metabolismo Energético , Expressão Gênica , Interação Gene-Ambiente , Ruído/efeitos adversosRESUMO
Dynamics in the process of transcription are often simplified, yet they play an important role in transcript folding, translation into functional protein and DNA supercoiling. While the modulation of the speed of transcription of individual genes and its role in regulation and proper protein folding has been analyzed in depth, the functional relevance of differences in transcription speeds as well as the factors influencing it have not yet been determined on a genome-wide scale. Here we determined transcription speeds for the majority of E. coli genes based on experimental data. We find large differences in transcription speed between individual genes and a strong influence of both cellular location as well as the relative importance of genes for cellular function on transcription speeds. Investigating factors influencing transcription speeds we observe both codon composition as well as factors associated to DNA topology as most important factors influencing transcription speeds. Moreover, we show that differences in transcription speeds are sufficient to explain the timing of regulatory responses during environmental shifts and highlight the importance of the consideration of transcription speeds in the design of experiments measuring transcriptomic responses to perturbations.