RESUMO
OBJECTIVE: Metabolic changes have been extensively documented in neurodegenerative brain disorders, including Parkinson's disease and Alzheimer's disease (AD). Mutations in the C. elegans swip-10 gene result in dopamine (DA) dependent motor dysfunction accompanied by DA neuron degeneration. Recently, the putative human ortholog of swip-10 (MBLAC1) was implicated as a risk factor in AD, a disorder that, like PD, has been associated with mitochondrial dysfunction. Interestingly, the AD risk associated with MBLAC1 arises in subjects with cardiovascular morbidity, suggesting a broader functional insult arising from reduced MBLAC1 protein expression and one possibly linked to metabolic alterations. METHODS: Our current studies, utilizing Mblac1 knockout (KO) mice, seek to determine whether mitochondrial respiration is affected in the peripheral tissues of these mice. We quantified the levels of mitochondrial coenzymes, NADH, FAD, and their redox ratio (NADH/FAD, RR) in livers and kidneys of wild-type (WT) mice and their homozygous KO littermates of males and females, using 3D optical cryo-imaging. RESULTS: Compared to WT, the RR of livers from KO mice was significantly reduced, without an apparent sex effect, driven predominantly by significantly lower NADH levels. In contrast, no genotype and sex differences were observed in kidney samples. Serum analyses of WT and KO mice revealed significantly elevated glucose levels in young and aged KO adults and diminished cholesterol levels in the aged KOs, consistent with liver dysfunction. DISCUSSION/CONCLUSION: As seen with C. elegans swip-10 mutants, loss of MBLAC1 protein results in metabolic changes that are not restricted to neural cells and are consistent with the presence of peripheral comorbidities accompanying neurodegenerative disease in cases where MBLAC1 expression changes impact risk.
Assuntos
Caenorhabditis elegans , Doenças Neurodegenerativas , Animais , Feminino , Humanos , Camundongos , Masculino , Idoso , Camundongos Knockout , Caenorhabditis elegans/genética , Doenças Neurodegenerativas/diagnóstico por imagem , NAD/metabolismo , Neurônios Dopaminérgicos/metabolismo , Imagem ÓpticaRESUMO
BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Assuntos
Transporte Axonal , NAD , Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicólise , Homeostase , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismoRESUMO
Metabolic changes have been extensively documented in brain tissue undergoing neurodegeneration, including Parkinson's disease and Alzheimer's disease (AD). Mutations in the C. elegans swip-10 gene result in dopamine (DA) dependent motor dysfunction accompanied by DA neuron degeneration. Recently, the putative human ortholog of swip-10 (MBLAC1) was implicated as a risk factor in AD, that like PD, has been associated with mitochondrial dysfunction. Interestingly, the AD risk associated with MBLAC1 arises in subjects with cardiovascular morbidity, suggesting the possibility of a broader functional insult arising from reduced MBLAC1 protein expression, and one possibly linked to metabolic alterations. Our current studies, utilizing Mblac1 knockout (KO) mice, seeks to determine whether mitochondrial respiration is affected in peripheral tissues of these animals in this model. To initiate these studies, we quantified the levels of mitochondrial coenzymes, NADH, FAD, and their redox ratio (NADH/FAD, RR) in the livers of wild type (WT) mice and their homozygous KO littermates, using 3D optical cryo-imaging. We found that Mblac1 KO mice exhibited a greater oxidized redox state compared to WT mice. When compared to the WT group, the redox ratio of KO mice was decreased by 46.32%, driven predominantly by significantly lower NADH levels (more oxidized state). We speculate that, as seen with C. elegans swip-10 mutants, that loss of MBLAC1 protein results in deficits in tricarboxylic acid cycle (TCA) production of NADH and FAD TCA that leads to diminished cellular ATP production and oxidative stress. Such observations are consistent with changes that in the central nervous system (CNS) could support neurodegeneration and in the periphery account for comorbidities.
Assuntos
Doença de Alzheimer , Caenorhabditis elegans , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Fígado , Camundongos Knockout , NAD/metabolismo , Imagem ÓpticaRESUMO
Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.
Assuntos
Estimulantes do Sistema Nervoso Central , Ketamina , Camundongos , Masculino , Feminino , Animais , Ketamina/farmacologia , Receptor CB1 de Canabinoide/genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Rimonabanto/farmacologiaRESUMO
Background: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. Methods: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. Results: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. Conclusion: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.