RESUMO
Li-Fraumeni syndrome is caused by inherited TP53 tumor suppressor gene mutations. MicroRNA miR-34a is a p53 target and modifier gene. Interestingly, miR-34 triple-null mice exhibit normal p53 responses and no overt cancer development, but the lack of miR-34 promotes tumorigenesis in cancer-susceptible backgrounds. miR-34 genes are highly conserved and syntenic between zebrafish and humans. Zebrafish miR-34a and miR-34b/c have similar expression timing in development, but miR-34a is more abundant. DNA damage by camptothecin led to p53-dependent induction of miR-34 genes, while miR-34a mutants were adult-viable and had normal DNA damage-induced apoptosis. Nevertheless, miR-34a-/- compound mutants with a gain-of-function tp53R217H/ R217H or tp53-/- mutants were more cancer-prone than tp53 mutants alone, confirming the tumor-suppressive function of miR-34a. Through transcriptomic comparisons at 28 hours post-fertilization (hpf), we characterized DNA damage-induced transcription, and at 8, 28 and 72 hpf we determined potential miR-34a-regulated genes. At 72 hpf, loss of miR-34a enhanced erythrocyte levels and up-regulated myb-positive hematopoietic stem cells. Overexpression of miR-34a suppressed its reporter mRNA, but not p53 target induction, and sensitized injected embryos to camptothecin but not to γ-irradiation.
Assuntos
Dano ao DNA , Hematopoese , MicroRNAs , Proteína Supressora de Tumor p53 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Apoptose/genética , Camptotecina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Hematopoese/genética , Síndrome de Li-Fraumeni/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Liquid biopsy is a minimally-invasive diagnostic method that may improve access to molecular profiling for non-small cell lung cancer (NSCLC) patients. Although cell-free DNA (cf-DNA) isolation from plasma is the standard liquid biopsy method for detecting DNA mutations in cancer patients, the sensitivity can be highly variable. Vn96 is a peptide with an affinity for both extracellular vesicles (EVs) and circulating cf-DNA. In this study, we evaluated whether peptide-affinity (PA) precipitation of EVs and cf-DNA from NSCLC patient plasma improves the sensitivity of single nucleotide variants (SNVs) detection and compared observed SNVs with those reported in the matched tissue biopsy. NSCLC patient plasma was subjected to either PA precipitation or cell-free methods and total nucleic acid (TNA) was extracted; SNVs were then detected by next-generation sequencing (NGS). PA led to increased recovery of DNA as well as an improvement in NGS sequencing parameters when compared to cf-TNA. Reduced concordance with tissue was observed in PA-TNA (62%) compared to cf-TNA (81%), mainly due to identification of SNVs in PA-TNA that were not observed in tissue. EGFR mutations were detected in PA-TNA with 83% sensitivity and 100% specificity. In conclusion, PA-TNA may improve the detection limits of low-abundance alleles using NGS.
Assuntos
Ácidos Nucleicos Livres/genética , Vesículas Extracelulares/química , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Mutação/genética , Peptídeos/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Feminino , Humanos , Biópsia Líquida , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) has a high fatality rate, mainly due to its asymptomatic nature until late-stage disease and therefore delayed diagnosis that leads to a lack of timely treatment intervention. Consequently, there is a significant need for better methods to screen populations that are at high risk of developing PDAC. Such advances would result in earlier diagnosis, more treatment options, and ultimately better outcomes for patients. Several recent studies have applied the concept of liquid biopsy, which is the sampling of a biofluid (such as blood plasma) for the presence of disease biomarkers, to develop screening approaches for PDAC; several of these studies have focused on analysis of extracellular vesicles (EVs) and their cargoes. While these studies have identified many potential biomarkers for PDAC that are present within EVs, their application to clinical practice is hindered by the lack of a robust, reproducible method for EV isolation and analysis that is amenable to a clinical setting. Our previous research has shown that the Vn96 synthetic peptide is indeed a robust and reproducible method for EV isolation that has the potential to be used in a clinical setting. We have therefore chosen to investigate the utility of the Vn96 synthetic peptide for this isolation of EVs from human plasma and the subsequent detection of small RNA biomarkers of PDAC by Next-generation sequencing (NGS) analysis. We find that analysis of small RNA from Vn96-isolated EVs permits the discrimination of PDAC patients from non-affected individuals. Moreover, analyses of all small RNA species, miRNAs, and lncRNA fragments are most effective at segregating PDAC patients from non-affected individuals. Several of the identified small RNA biomarkers have been previously associated with and/or characterized in PDAC, indicating the validity of our findings, whereas other identified small RNA biomarkers may have novel roles in PDAC or cancer in general. Overall, our results provide a basis for a clinically-amendable detection and/or screening strategy for PDAC using a liquid biopsy approach that relies on Vn96-mediated isolation of EVs from plasma.
Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , MicroRNAs , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , MicroRNAs/genética , Peptídeos/genética , Análise de Sequência de RNA , Biomarcadores Tumorais/genética , Neoplasias PancreáticasAssuntos
Epidermólise Bolhosa Simples/metabolismo , Queratinócitos/citologia , Queratinas/genética , Queratinas/metabolismo , Metilaminas/química , Citoesqueleto/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Humanos , Chaperonas Moleculares/metabolismo , MutaçãoRESUMO
The Colorado potato beetle Leptinotarsa decemlineata is an insect pest that threatens potato crops globally. The primary method to control its damage on potato plants is the use of insecticides, including imidacloprid, chlorantraniliprole and spinosad. However, insecticide resistance has been frequently observed in Colorado potato beetles. The molecular targets and the basis of resistance to imidacloprid and chlorantraniliprole have both been previously quantified. This work was undertaken with the overarching goal of better characterizing the molecular changes associated with spinosad exposure in this insect pest. Next-generation sequencing was conducted to identify transcripts that were differentially expressed between Colorado potato beetles exposed to spinosad versus control insects. Results showed several transcripts that exhibit different expression levels between the two conditions, including ones coding for venom carboxylesterase-6, chitinase 10, juvenile hormone esterase and multidrug resistance-associated protein 4. In addition, several microRNAs, such as miR-12-3p and miR-750-3p, were also modulated in the investigated conditions. Overall, this work reveals a molecular footprint underlying spinosad response in Colorado potato beetles and provides novel leads that could be targeted as part of RNAi-based approaches to control this insect pest.
RESUMO
Cell-derived extracellular vesicles (EVs) participate in cell-cell communication via transfer of molecular cargo including genetic material like miRNAs. In mammals, it has previously been established that EV-mediated transfer of miRNAs can alter the development or function of immune cells, such as macrophages. Our previous research revealed that Atlantic salmon head kidney leukocytes (HKLs) change their morphology, phagocytic ability and miRNA profile from primarily "monocyte-like" at Day 1 to primarily "macrophage-like" at Day 5 of culture. Therefore, we aimed to characterize the miRNA cargo packaged in EVs released from these two cell populations. We successfully isolated EVs from Atlantic salmon HKL culture supernatants using the established Vn96 peptide-based pull-down. Isolation was validated using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. RNA-sequencing identified 19 differentially enriched (DE) miRNAs packaged in Day 1 versus Day 5 EVs. Several of the highly abundant miRNAs, including those that were DE (e.g. ssa-miR-146a, ssa-miR-155 and ssa-miR-731), were previously identified as DE in HKLs and are associated with macrophage differentiation and immune response in other species. Interestingly, the abundance relative of the miRNAs in EVs, including the most abundant miRNA (ssa-miR-125b), was different than the miRNA abundance in HKLs, indicating selective packaging of miRNAs in EVs. Further study of the miRNA cargo in EVs derived from fish immune cells will be an important next step in identifying EV biomarkers useful for evaluating immune cell function, fish health, or response to disease.