RESUMO
Investigations on diverse aspects of fluoro-organic compounds have rapidly increased during the past decades. Because natural sources of fluoro-organic compounds are extremely rare, the industrial synthesis of fluorinated organic compounds and production of fluorinated natural product derivatives have greatly expanded in recent years because of their increasing importance in the agrochemical and pharmaceutical industries. Due to structural complexity or instability, synthetic modification is often not possible, and various biofluorination strategies have been developed in recent years for applications in the anti-cancer, anti-viral and anti-infection fields. Despite the industrial importance of fluorinated compounds, there have been serious concerns worldwide over the levels and synthetic routes of certain fluorinated organic compounds, in particular perfluorinated chemicals (PFCs). PFCs are emerging and recalcitrant pollutants which are widely distributed in the environment and have been detected in humans and wildlife globally. PFCs have been demonstrated to be potentially carcinogenic, adversely affect the neuroendocrine and immune systems, and produce neurotoxicity, heptatotoxicity and endocrine disrupting effects in vertebrate animals. Here, we provide an overview of recent advances in our understanding of the biology of various fluoro-organic compounds and perspectives for new enzymes and metabolic pathways for bioremediation of these chemicals.