Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Physiol ; 235(4): 3497-3507, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31552691

RESUMO

Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM-MSCs was first verified in a pellet culture. The BM-MSCs were then either seeded onto a composite scaffold rhCo-PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM-MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM-MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM-MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell-biomaterial constructs for cartilage regeneration.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Condrogênese/genética , Colágeno/genética , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno/metabolismo , Matriz Extracelular/genética , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Regeneração/genética
2.
Cytotherapy ; 21(2): 175-188, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30611671

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are a promising candidate for treatment of inflammatory disorders, but their efficacy in human inflammatory bowel diseases (IBDs) has been inconsistent. Comparing the results from various pre-clinical and clinical IBD studies is also challenging due to a large variation in study designs. METHODS: In this comparative pre-clinical study, we compared two administration routes and investigated the safety and feasibility of both fresh and cryopreserved platelet-lysate-expanded human bone marrow-derived MSCs without additional licensing in a dextran sodium sulfate (DSS) colitis mouse model both in the acute and regenerative phases of colitis. Body weight, macroscopic score for inflammation and colonic interleukin (IL)-1ß and tumor necrosis factor (TNF)α concentrations were determined in both phases of colitis. Additionally, histopathology was assessed and Il-1ß and Agtr1a messenger RNA (mRNA) levels and angiotensin-converting enzyme (ACE) protein levels were measured in the colon in the regenerative phase of colitis. RESULTS: Intravenously administered MSCs exhibited modest anti-inflammatory capacity in the acute phase of colitis by reducing IL-1ß protein levels in the inflamed colon. There were no clear improvements in mice treated with fresh or cryopreserved unlicensed MSCs according to weight monitoring results, histopathology and macroscopic score results. Pro-inflammatory ACE protein expression and shedding were reduced by cryopreserved MSCs in the colon. CONCLUSIONS: In conclusion, we observed a good safety profile for bone marrow-derived platelet lysate-expanded MSCs in a mouse pre-clinical colitis model, but the therapeutic effect of MSCs prepared without additional licensing (i.e. such as MSCs are administered in graft-versus-host disease) was modest in the chosen in vivo model system and limited to biochemical improvements in cytokines without a clear benefit in histopathology or body weight development.


Assuntos
Plaquetas/metabolismo , Colite/terapia , Criopreservação , Doenças Inflamatórias Intestinais/terapia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Animais , Células Cultivadas , Colite/induzido quimicamente , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Estudos de Viabilidade , Seguimentos , Humanos , Injeções Intraperitoneais/métodos , Injeções Intravenosas/métodos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
3.
Stem Cells ; 34(3): 781-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26731338

RESUMO

Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39. In this study, we demonstrate that adenosine is actively produced from adenosine 5'-monophosphate (AMP) by CD73 on MSCs and MSC-derived extracellular vesicles (EVs). Our results indicate that although MSCs express CD39 at low level and it colocalizes with CD73 in bulge areas of membranes, the most efficient adenosine production from adenosine 5'-triphosphate (ATP) requires co-operation of MSCs and activated T cells. Highly CD39 expressing activated T cells produce AMP from ATP and MSCs produce adenosine from AMP via CD73 activity. Furthermore, adenosinergic signaling plays a role in suppression of T cell proliferation in vitro. In conclusion, this study shows that adenosinergic signaling is an important immunoregulatory mechanism of MSCs, especially in situations where ATP is present in the extracellular environment, like in tissue injury. An efficient production of immunosuppressive adenosine is dependent on the concerted action of CD39-positive immune cells with CD73-positive cells such as MSCs or their EVs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/genética , Terapia de Imunossupressão , Células-Tronco Mesenquimais/imunologia , 5'-Nucleotidase/genética , Adenosina/biossíntese , Monofosfato de Adenosina/metabolismo , Animais , Antígenos CD/genética , Apirase/genética , Vesículas Extracelulares/imunologia , Proteínas Ligadas por GPI/genética , Humanos , Tolerância Imunológica/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Células-Tronco Mesenquimais/metabolismo
4.
Cytotherapy ; 18(3): 423-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26857232

RESUMO

BACKGROUND AIMS: Cord blood (CB) is an attractive source of mesenchymal stromal cells (MSCs) because of its abundant availability and ease of collection. However, the success rate of generating CB-MSCs is low. In this study, our aim was to demonstrate the efficiency of our previously described method to obtain MSCs from CB and further characterize them and to study the effects of different culture conditions on MSCs. METHODS: CB-MSC cultures were established in low oxygen (3%) conditions on fibronectin in 10% fetal bovine serum containing culture medium supplemented with combinations of growth factors. Cells were characterized for their adipogenic, osteogenic and chondrogenic differentiation capacity; phenotype; and HOX gene expression profile. The functionality of the cells cultured in different media was tested in vitro with angiogenesis and T-cell proliferation assays. RESULTS: We demonstrate 87% efficacy in generating MSCs from CB. The established cells had typical MSC characteristics with reduced adipogenic differentiation potential and a unique HOX gene fingerprint. Growth factor-rich medium and a 3% oxygen condition enhanced cell proliferation; however, the growth factor-rich medium had a negative effect on the expression of CD90. Dexamethasone-containing medium improved the capacity of the cells to suppress T-cell proliferation, whereas the cells grown without dexamethasone were more able to support angiogenesis. CONCLUSIONS: Our results demonstrate that the composition of expansion medium is critical for the functionality of MSCs and should always be appropriately defined for each purpose.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular/métodos , Células Cultivadas , Meios de Cultura/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos
5.
Sci Rep ; 14(1): 26678, 2024 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-39496674

RESUMO

Natural killer (NK) cells are a promising allogeneic immunotherapy option due to their natural ability to kill tumor cells, and due to their apparent safety. This study describes the development of a GMP-compliant manufacturing protocol for the local production of functionally potent NK cells tailored for high-risk acute myeloid leukemia (AML) and neuroblastoma (NBL) patients. Moreover, the quality control strategy and considerations for product batch specifications in early clinical development are described. The protocol is based on the CliniMACS Prodigy platform and Natural Killer Cell Transduction (NKCT) (Miltenyi Biotec). NK cells are isolated from leukapheresis through CD3 depletion and CD56 enrichment, followed by a 12-hour activation with IL-2 and IL-15 cytokines. Three CliniMACS Prodigy processes demonstrated the feasibility and consistency of the modified NKCT process. A three-step process without expansion, however, compromised the NK cell yield. T cells were depleted effectively, indicating excellent safety of the product. Characterization of the NK cells before and after cytokine activation revealed a notable increase in the expression of activation markers, particularly CD69, consistent with enhanced functionality. Intriguingly, the NK cells exhibited increased killing efficacy against patient-derived CD33 + AML blasts and NBL cells in vitro, suggesting a potential therapeutic benefit in AML and NBL.


Assuntos
Células Matadoras Naturais , Leucemia Mieloide Aguda , Neuroblastoma , Humanos , Células Matadoras Naturais/imunologia , Neuroblastoma/patologia , Neuroblastoma/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Interleucina-15/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Interleucina-2/metabolismo , Leucaférese/métodos , Citocinas/metabolismo
6.
Burns ; 49(5): 1144-1156, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36195485

RESUMO

BACKGROUND: Autologous split-thickness skin grafts (STSGs) are the standard of care for closure of deep and large burns. However, perforation and extensive fishnet-like expansion of the grafts to achieve greater area wound coverage can lead to treatment failures or esthetically poor healing outcomes and scarring. The purpose of this study was to validate an autologous advanced therapy medicinal product (ATMP)-compliant skin cell suspension and evaluate its efficacy to promote epithelialization. METHODS: Cells isolated from a piece of STSG according to ATMP classification requirements were sprayed onto 20 patients during a single operation in a validation study. Comparative evaluation of treatment efficacy was carried out using side-by-side skin graft donor site wounds that were standardized in depth. Firstly, we characterized wound healing transcriptomes at 14 and 21 days from serial wound biopsies in seven patients. Then, side-by-side wounds in four patients were treated with or without the skin cells. The wounds were photographed, clinical outcomes assessed, and the treatment and control wound transcriptomes at 14 days were compared to the untreated wounds' healing transcriptomes. RESULTS: The average cell yield after isolation from the STSG was 2.4 × 106 cells/cm2 with 96 % viability. The product contained mainly keratinocytes and their precursors but also other skin cells such as fibroblasts were present. As compared to vehicle-treated donor site wounds, the wounds treated with cells demonstrated improved epithelialization by both direct comparison and machine learning analysis of the transcriptomes. CONCLUSIONS: We showed that rapid and scalable ATMP-classified processing of skin cells is feasible, and application of the skin cells effectively promotes healing and epithelization of donor site wounds.


Assuntos
Queimaduras , Lesões dos Tecidos Moles , Humanos , Transplante Autólogo , Queimaduras/patologia , Cicatrização , Pele/patologia , Transplante de Pele/efeitos adversos , Lesões dos Tecidos Moles/cirurgia
7.
Nat Metab ; 2(1): 97-109, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32066997

RESUMO

The complex relationship between metabolic disease risk and body fat distribution in humans involves cellular characteristics which are specific to body fat compartments. Here we show depot-specific differences in the stromal vascual fraction of visceral and subcutaneous adipose tissue by performing single-cell RNA sequencing of tissue specimen from obese individuals. We characterize multiple immune cells, endothelial cells, fibroblasts, adipose and hematopoietic stem cell progenitors. Subpopulations of adipose-resident immune cells are metabolically active and associated with metabolic disease status and those include a population of potential dysfunctional CD8+ T cells expressing metallothioneins. We identify multiple types of adipocyte progenitors that are common across depots, including a subtype enriched in individuals with type 2 diabetes. Depot-specific analysis reveals a class of adipocyte progenitors unique to visceral adipose tissue, which shares common features with beige preadipocytes. Our human single-cell transcriptome atlas across fat depots provides a resource to dissect functional genomics of metabolic disease.


Assuntos
Tecido Adiposo/metabolismo , Doenças Metabólicas/metabolismo , Análise de Célula Única/métodos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Adulto , Distribuição da Gordura Corporal , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Doenças Metabólicas/patologia , Pessoa de Meia-Idade , Obesidade/metabolismo
8.
Glycoconj J ; 26(3): 367-84, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19037724

RESUMO

Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and alpha2-3-sialylation. Mesenchymal stem cells expressed SSEA-4 and sialyl Lewis x epitopes. Characteristic glycosylation features that appeared in differentiated osteoblasts included abundant sulfate ester modifications. The results show that glycosylation analysis can be used to evaluate MSC differentiation state.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Glicômica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Citometria de Fluxo , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/química , Ligação Proteica , Reprodutibilidade dos Testes
9.
Stem Cell Res Ther ; 10(1): 164, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196185

RESUMO

BACKGROUND: Contrary to the minimal criteria proposed by the International Society for Cell and Gene Therapy for defining multipotent mesenchymal stromal cells (MSC), human leukocyte antigen (HLA)-DR expression is largely unpredictable in ex vivo-expanded clinical-grade cultures. Although activation of MSC in culture does not appear to affect their functionality, a large study investigating the impact of HLA-DR expression on cell identity and potency is still missing in the literature. METHODS: A retrospective analysis of HLA-DR expression in 130 clinical batches of bone marrow (BM)-MSC from two independent Good Manufacturing Practice-compliant production facilities was performed in order to identify the consequences on critical quality attributes as well as potential activation cues and dynamics of MSC activation in culture. RESULTS: HLA-DR+ cells in culture were confirmed to maintain fibroblastic morphology, mesenchymal phenotype identity, multipotency in vitro, and immunomodulatory capacity. Interestingly, the use of either human sera or platelet lysate supplements resulted in similar results. CONCLUSIONS: HLA-DR expression should be considered informative rather than as a criterion to define MSC. Further work is still required to understand the impact of HLA-DR expression in the context of product specifications on BM-MSC qualities for clinical use in specific indications.


Assuntos
Células da Medula Óssea/metabolismo , Antígenos HLA-DR/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Humanos , Interferon gama/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estudos Retrospectivos
10.
Front Immunol ; 10: 1627, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379832

RESUMO

Some recent reports suggest that cryopreserved and thawed mesenchymal stromal cells (MSCs) may have impaired functional properties as compared to freshly harvested MSCs from continuous cultures. A cryopreservation step in the manufacturing process brings important benefits, since it enables immediate off-the-shelf access to the products and a completion of all quality testing before batch release and administration to the patient. Cryopreservation is also inevitable in MSC banking strategies. In this study, we present the results from the MSC stability testing program of our in-house manufactured clinical-grade allogeneic bone marrow-derived MSC product that is expanded in platelet lysate and frozen in passage 2. The current manufacturing protocol contains only one freezing step and the frozen MSC product is thawed bed-side at the clinic. We can conclude superior viability and cell recovery of the frozen and thawed MSC product utilizing the validated freezing and thawing protocols we have developed. The MSC phenotype and differentiation potential was generally found to be unaltered after thawing, but the thawed cells exhibited a 50% reduced, but not completely abolished, performance in an in vitro immunosuppression assay. The in vitro immunosuppression assay results should, however, be interpreted with caution, since the chosen assay mainly measures one specific immunosuppressive mechanism of MSCs to suppress T-cell proliferation. Since at least two freezing steps are usually necessary in MSC banking strategies, we went on to investigate the impact of repeated freezing on MSC quality attributes. We can conclude that two freezing steps with a preceding cell culture phase of at least one passage before freezing is feasible and does not substantially affect basic cell manufacturing parameters or quality attributes of the final frozen and thawed product. Our results suggest, however, that an exhaustive number of freezing steps (≥4) may induce earlier senescence. In conclusion, our results support the utilization of frozen MSC products and MSC banking strategies, but emphasize the need of always performing detailed studies on also the cryopreserved MSC counterpart and to carefully report the cryopreservation and thawing protocols.


Assuntos
Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Criopreservação/métodos , Feminino , Congelamento , Humanos , Terapia de Imunossupressão/métodos , Masculino , Linfócitos T/citologia , Adulto Jovem
11.
J Tissue Eng Regen Med ; 11(10): 2725-2736, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27214005

RESUMO

Effects of oxygen tension on the generation, expansion, proliferation and differentiation of stromal cell types is widely described in the literature. However, data on the internal heterogeneity of applied cell populations at different O2 levels and possible impacts on differentiation potentials are controversial. Here, the expression of 39 human HOX genes was determined in neonatal cord blood stromal cells and linked to differentiation-associated signatures. In cord blood, unrestricted somatic stromal cells (USSCs), lacking HOX gene expression, and cord blood-derived multipotent stromal cells (CB-MSCs), expressing about 20 HOX genes, are distinguished by their specific HOX code. Interestingly, 74% of the clones generated at 21% O2 were HOX-negative USSCs, whereas 73% of upcoming clones at 3% O2 were HOX-positive CB-MSCs. In order to better categorize distinct cell lines generated at 3% O2 , the expression of all 39 HOX genes within HOX clusters A, B, C and D were tested and new subtypes defined: cells negative in all four HOX clusters (USSCs); cells positive in all four clusters (CB-MSCsABCD ); and subpopulations missing a single cluster (CB-MSCsACD and CB-MSCsBCD ). Comprehensive qPCR analyses of established chondro-osteomarkers revealed subtype-specific signatures verifiably associated with in vitro and in vivo differentiation capacity. The data presented here underline the necessity of better characterizing distinct cell populations at a clonal level, taking advantage of the inherent specific HOX code as a distinguishing feature between individual subtypes. Moreover, the correlation of subtype-specific molecular signatures with in vitro and in vivo bone formation is discussed. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Sangue Fetal/citologia , Genes Homeobox , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Oxigênio/farmacologia , Adulto , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Recém-Nascido , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
12.
Cytotechnology ; 68(4): 891-906, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25777046

RESUMO

Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze-thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 10(9) ± 4.74 × 10(9) cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5-66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use.

13.
Stem Cell Res Ther ; 6: 167, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26345992

RESUMO

INTRODUCTION: Bone marrow-derived mesenchymal stromal cells (MSCs) have been intensely studied for the purpose of developing solutions for clinical tissue engineering. Autologous MSCs can potentially be used to replace tissue defects, but the procedure also carries risks such as immunization and xenogeneic infection. Replacement of the commonly used fetal calf serum (FCS) with human platelet lysate and plasma (PLP) to support cell growth may reduce some of these risks. Altered media could, however, influence stem cell differentiation and we address this experimentally. METHODS: We examined human MSC differentiation into the osteoblast lineage using in vitro two- and three-dimensional cultures with PLP or FCS as cell culture medium supplements. Differentiation was followed by quantitative polymerase chain reaction, and alkaline phosphatase activity, matrix formation and matrix calcium content were quantified. RESULTS: Three-dimensional culture, where human MSCs were grown on collagen sponges, markedly stimulated osteoblast differentiation; a fourfold increase in calcium deposition could be observed in both PLP and FCS groups. PLP-grown cells showed robust osteogenic differentiation both in two- and three-dimensional MSC cultures. The calcium content of the matrix in the two-dimensional PLP group at day 14 was 2.2-fold higher in comparison to the FCS group (p < 0.0001), and at day 21 it was still 1.3-fold higher (p < 0.001), suggesting earlier calcium accumulation to the matrix in the PLP group. This was supported by stronger Alizarin Red staining in the PLP group at day 14. In two-dimesional PLP cultures, cellular proliferation appeared to decrease during later stages of differentiation, while in the FCS group the number of cells increased throughout the experiment. In three-dimensional experiments, the PLP and FCS groups behaved more congruently, except for the alkaline phosphatase activity and mRNA levels which were markedly increased by PLP. CONCLUSIONS: Human PLP was at least equal to FCS in supporting osteogenic differentiation of human MSCs in two- and three-dimensional conditions; however, proliferation was inferior. As PLP is free of animal components, and thus represents reduced risk for xenogeneic infection, its use for human MSC-induced bone repair in the clinic by the three-dimensional live implants presented here appears a promising therapy option.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese , Adulto , Células Cultivadas , Humanos , Cultura Primária de Células/métodos , Soro
14.
Methods Mol Biol ; 698: 63-73, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431511

RESUMO

There is growing evidence that low oxygen conditions are beneficial for in vitro stem cell culturing. Mimicking the physiological oxygen tension of the placental stem cell niche in cell expansion can -ultimately result in more robust cell expansion. Growing evidence also suggests that hypoxic preconditioning of cells may improve therapeutic outcomes. Here we describe a scalable method that enables mesenchymal stromal cell expansion from virtually every cord blood unit, including those that would normally be disqualified from banking. In addition, the cells obtained by the described method fulfill exclusively the mesenchymal stromal cell characteristics defined by the International Society for Cellular Therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Núcleo Celular/metabolismo , Criopreservação , Fibronectinas/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxigênio/farmacologia
15.
J Mol Cell Biol ; 3(2): 99-107, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21149348

RESUMO

Umbilical cord blood (UCB) is an efficient and valuable source of hematopoietic stem cells (HSCs) for transplantation. In addition to HSCs it harbours low amounts of mesenchymal stem cells (MSCs). No single marker to identify cord blood-derived stem cells, or to indicate their multipotent phenotype, has been characterized so far. SSEA-3 and -4 are cell surface globoseries glycosphingolipid epitopes that are commonly used as markers for human embryonic stem cells, where SSEA-3 rapidly disappears when the cells start to differentiate. Lately SSEA-3 and -4 have also been observed in MSCs. As there is an ongoing discussion and variation of stem-cell markers between laboratories, we have now comprehensively characterized the expression of these epitopes in both the multipotent stem-cell types derived from UCB. We have performed complementary analysis using gene expression analysis, mass spectrometry and immunochemical methods, including both flow cytometry and immunofluoresence microscopy. SSEA-4, but not SSEA-3, was expressed on MSCs but absent from HSCs. Our findings indicate that SSEA-3 and/or -4 may not be optimal markers for multipotency in the case of stem cells derived from cord blood, as their expression may be altered by cell-culture conditions.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Sangue Fetal/metabolismo , Glicoesfingolipídeos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo , Antígenos Glicosídicos Associados a Tumores/genética , Diferenciação Celular , Células Cultivadas , Sangue Fetal/citologia , Citometria de Fluxo , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Antígenos Embrionários Estágio-Específicos/genética
16.
Curr Protoc Stem Cell Biol ; Chapter 2: Unit 2A.3, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18785175

RESUMO

Cord blood is a rich source of stem cells especially for hematopoietic stem cells. Recently, mesenchymal stem cells (MSCs) have also been shown to exist in cord blood. However, these fibroblast-like multipotent progenitor cells are rather rare in cord blood. Many different methods have been used for their culture. This unit describes one method to obtain MSCs from cord blood and another method to differentiate these cells into osteoblasts, which is one of the lineages that mesenchymal stem cells are capable of differentiating into. The starting material for the protocol is cord blood-derived mononuclear cells. As cord blood contains a great number of erythroid precursors, the glycophorin A-positive cells are depleted using magnetic cell separation to reduce their presence in MSC culture. Osteoblast differentiation and a method to demonstrate the result of the differentiation are also described in this unit.


Assuntos
Separação Celular/métodos , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Diferenciação Celular , Feminino , Humanos , Recém-Nascido , Leucócitos Mononucleares/citologia , Osteoblastos/citologia , Gravidez
17.
Mol Ther ; 15(12): 2172-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17878901

RESUMO

Progenitor cell therapy is a potential new treatment option for ischemic conditions in the myocardium and skeletal muscles. However, it remains unclear whether umbilical cord blood (UCB)-derived progenitor cells can provide therapeutic effects in ischemic muscles and whether ex vivo gene transfer can be used for improving the effect. In this study, the use of a lentiviral vector led to efficient transduction of both UCB-derived hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Our method resulted in a long-term transgene expression and did not alter the differentiation potential of either HSCs or MSCs. In addition, we studied the therapeutic potential of CD133(+) and MSC progenitor cells transduced ex vivo with lentiviruses encoding the mature form of vascular endothelial growth factor D (VEGF-D(DeltaNDeltaC)) or the enhanced green fluorescent protein (eGFP) marker gene in a nude mouse model of skeletal muscle ischemia. Progenitor cells enhanced the regeneration of ischemic muscles without a detectable long-term engraftment of either CD133(+) or MSC progenitor cells. Our results show that, rather than directly participating in angiogenesis or skeletal myogenesis, UCB-derived progenitor cells indirectly enhance the regenerative capacity of skeletal muscle after acute ischemic injury. However, VEGF-D gene transfer of progenitor cells did not improve the therapeutic effect in ischemic muscles.


Assuntos
Sangue Fetal/citologia , Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Modelos Animais , Músculo Esquelético/fisiopatologia , Regeneração , Células-Tronco/citologia , Animais , Camundongos , Camundongos Nus
18.
Stem Cells ; 25(1): 197-202, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17008421

RESUMO

Human embryonic and mesenchymal stem cell therapies may offer significant benefit to a large number of patients. Recently, however, human embryonic stem cell lines cultured on mouse feeder cells were reported to be contaminated by the xeno-carbohydrate N-glycolylneuraminic acid (Neu5Gc) and considered potentially unfit for human therapy. To determine the extent of the problem of Neu5Gc contamination for the development of stem cell therapies, we investigated whether it also occurs in cells cultured on human feeder cells and in mesenchymal stem cells, what are the sources of contamination, and whether the contamination is reversible. We found that N-glycolylneuraminic acid was present in embryonic stem cells cultured on human feeder cells, correlating with the presence of Neu5Gc in components of the commercial serum replacement culture medium. Similar contamination occurred in mesenchymal stem cells cultured in the presence of fetal bovine serum. The results suggest that the Neu5Gc is present in both glycoprotein and lipid-linked glycans, as detected by mass spectrometric analysis and monoclonal antibody staining, respectively. Significantly, the contamination was largely reversible in the progeny of both cell types, suggesting that decontaminated cells may be derived from existing stem cell lines. Although major complications have not been reported in the clinical trials with mesenchymal stem cells exposed to fetal bovine serum, the immunogenic contamination may potentially be reflected in the viability and efficacy of the transplanted cells and thus bias the published results. Definition of safe culture conditions for stem cells is essential for future development of cellular therapies.


Assuntos
Antígenos Heterófilos/farmacologia , Células-Tronco Embrionárias/fisiologia , Células-Tronco Mesenquimais/fisiologia , Ácidos Neuramínicos/imunologia , Ácidos Neuramínicos/farmacologia , Anticorpos/farmacologia , Especificidade de Anticorpos , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Citometria de Fluxo , Homeostase , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fenótipo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA