Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Genet Med ; 24(12): 2501-2515, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178483

RESUMO

PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.


Assuntos
Hipogonadismo , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Hipogonadismo/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas Repressoras , Fatores de Troca do Nucleotídeo Guanina , Proteínas Ativadoras de GTPase/genética
2.
J Neurochem ; 152(3): 315-332, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31344270

RESUMO

During development, neurons extend axons toward their appropriate synaptic targets to establish functional neuronal connections. The growth cone, a highly motile structure at the tip of the axon, is capable of recognizing extracellular guidance cues and translating them into directed axon outgrowth through modulation of the actin cytoskeleton. Netrin-1 mediates its attractive function through the receptor deleted in colorectal cancer (DCC) to promote axon outgrowth and guidance. The calcium-activated protease calpain is involved in the cleavage of cytoskeletal proteins, which plays an important role during adhesion turnover and cell migration. However, its function during neuronal development is less understood. Here we demonstrate that netrin-1 activated calpain in embryonic rat cortical neurons in an extracellular-regulated kinase 1/2-dependent manner. In addition, we found that netrin-1 stimulation led to an increase in calpain-1 localization in the axon, whereas its endogenous inhibitor calpastatin was decreased in the growth cones of cortical neurons by indirect immunofluorescence. Interestingly, calpain-1 was able to cleave DCC in vitro. Furthermore, netrin-1 induced the cleavage of the cytoskeletal proteins spectrin and focal adhesion kinase concomitantly with the intracellular domain of DCC in a calpain-dependent manner in embryonic rat cortical neurons. Cortical neurons over-expressing calpastatin or calpain-depleted neurons displayed increased basal axon length and were unresponsive to netrin-1 stimulation. Altogether, we propose a novel model whereby netrin-1/DCC-mediated axon outgrowth is modulated by calpain-mediated proteolysis of DCC and cytoskeletal targets in embryonic cortical neurons. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Calpaína/metabolismo , Receptor DCC/metabolismo , Neurogênese/fisiologia , Crescimento Neuronal/fisiologia , Neurônios , Animais , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Cones de Crescimento/metabolismo , Netrina-1/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
3.
PLoS Genet ; 12(2): e1005785, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26859289

RESUMO

Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.


Assuntos
Cílios/metabolismo , Proteínas Ativadoras de GTPase/genética , Doenças Renais Císticas/genética , Glomérulos Renais/patologia , Organogênese , Mutação Puntual/genética , Proteínas Repressoras/genética , Actinas/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Citoesqueleto/metabolismo , Embrião de Mamíferos/citologia , Etilnitrosoureia , Feminino , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Doenças Renais Císticas/patologia , Glomérulos Renais/metabolismo , Túbulos Renais/anormalidades , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Defeitos do Tubo Neural/patologia , Fenótipo , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes
4.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934641

RESUMO

One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.


Assuntos
Orientação de Axônios , Doenças do Sistema Nervoso/enzimologia , Sistema Nervoso/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Modelos Biológicos
5.
FASEB J ; 31(8): 3467-3483, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28442549

RESUMO

Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, GM3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of GM1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of GM2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of ß-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.


Assuntos
Encéfalo/metabolismo , Gangliosídeos/metabolismo , Neuraminidase/metabolismo , Neurônios/fisiologia , Animais , Encéfalo/patologia , Células Cultivadas , Embrião de Mamíferos , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Mucolipidoses/metabolismo , Neuraminidase/genética
6.
J Biol Chem ; 291(9): 4589-602, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26710849

RESUMO

The receptor deleted in colorectal cancer (DCC) mediates the attraction of growing axons to netrin-1 during brain development. In response to netrin-1 stimulation, DCC becomes a signaling platform to recruit proteins that promote axon outgrowth and guidance. The Ras GTPase-activating protein (GAP) p120RasGAP inhibits Ras activity and mediates neurite retraction and growth cone collapse in response to repulsive guidance cues. Here we show an interaction between p120RasGAP and DCC that positively regulates netrin-1-mediated axon outgrowth and guidance in embryonic cortical neurons. In response to netrin-1, p120RasGAP is recruited to DCC in growth cones and forms a multiprotein complex with focal adhesion kinase and ERK. We found that Ras/ERK activities are elevated aberrantly in p120RasGAP-deficient neurons. Moreover, the expression of p120RasGAP Src homology 2 (SH2)-SH3-SH2 domains, which interact with the C-terminal tail of DCC, is sufficient to restore netrin-1-dependent axon outgrowth in p120RasGAP-deficient neurons. We provide a novel mechanism that exploits the scaffolding properties of the N terminus of p120RasGAP to tightly regulate netrin-1/DCC-dependent axon outgrowth and guidance.


Assuntos
Axônios/metabolismo , Córtex Cerebral/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptores de Superfície Celular/agonistas , Transdução de Sinais , Proteínas Supressoras de Tumor/agonistas , Proteínas Supressoras de Tumor/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Substituição de Aminoácidos , Animais , Células Cultivadas , Córtex Cerebral/citologia , Galinhas , Receptor DCC , Embrião de Mamíferos/citologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Proteínas Mutantes/agonistas , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fatores de Crescimento Neural/antagonistas & inibidores , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Netrina-1 , Neurônios/citologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Interferência de RNA , Ratos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteína p120 Ativadora de GTPase/antagonistas & inibidores , Proteína p120 Ativadora de GTPase/química , Proteína p120 Ativadora de GTPase/genética
7.
Biol Cell ; 108(5): 115-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26787017

RESUMO

BACKGROUND INFORMATION: Rho GTPases play an essential role during the development of the nervous system. They induce cytoskeletal rearrangements that are critical for the regulation of axon outgrowth and guidance. It is generally accepted that Rac1 and Cdc42 are positive regulators of axon outgrowth and guidance, whereas RhoA is a negative regulator. However, spatiotemporal control of their activity can modify the function of Rho GTPases during axonal morphogenesis. Signalling downstream of the axon guidance cue netrin-1 and its receptor deleted in colorectal cancer (DCC) triggers the activation of Rac1 and the inhibition of RhoA to promote axon outgrowth. However, our previous work also suggests that netrin-1/DCC signalling can activate RhoA in a time- and region-specific manner. RESULTS: Here, we visualised RhoA activation in response to netrin-1 in live embryonic cortical neurons using fluorescence resonance energy transfer. RhoA activity oscillated in unstimulated neurons and netrin-1 increased the amplitude of the oscillations in growth cones after 5 min of stimulation. Within this period of time, netrin-1 transiently increased RhoA activity and modulated the pattern of RhoA oscillations. We found that the timing of netrin-1-induced RhoA activation was different in whole neurons, cell bodies and growth cones. CONCLUSIONS: We conclude that netrin-1 modulates the spatiotemporal activation of RhoA in embryonic cortical neurons. SIGNIFICANCE: This study demonstrates for the first time the short-term localised activation of RhoA in neuronal growth cones by the axon guidance cue netrin-1.


Assuntos
Axônios/metabolismo , Córtex Cerebral/metabolismo , Embrião de Mamíferos/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos/citologia , Transferência Ressonante de Energia de Fluorescência , Netrina-1 , Ratos
8.
J Biol Chem ; 290(37): 22520-31, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26221032

RESUMO

CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.


Assuntos
Córtex Cerebral/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Córtex Cerebral/citologia , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Neurônios/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredução , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Am J Hum Genet ; 88(5): 574-85, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565291

RESUMO

Regulation of cell proliferation and motility is essential for normal development. The Rho family of GTPases plays a critical role in the control of cell polarity and migration by effecting the cytoskeleton, membrane trafficking, and cell adhesion. We investigated a recognized developmental disorder, Adams-Oliver syndrome (AOS), characterized by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). Through a genome-wide linkage analysis, we detected a locus for autosomal-dominant ACC-TTLD on 3q generating a maximum LOD score of 4.93 at marker rs1464311. Candidate-gene- and exome-based sequencing led to the identification of independent premature truncating mutations in the terminal exon of the Rho GTPase-activating protein 31 gene, ARHGAP31, which encodes a Cdc42/Rac1 regulatory protein. Mutant transcripts are stable and increase ARHGAP31 activity in vitro through a gain-of-function mechanism. Constitutively active ARHGAP31 mutations result in a loss of available active Cdc42 and consequently disrupt actin cytoskeletal structures. Arhgap31 expression in the mouse is substantially restricted to the terminal limb buds and craniofacial processes during early development; these locations closely mirror the sites of impaired organogenesis that characterize this syndrome. These data identify the requirement for regulated Cdc42 and/or Rac1 signaling processes during early human development.


Assuntos
Displasia Ectodérmica/genética , Proteínas Ativadoras de GTPase/genética , Mutação , Actinas/metabolismo , Adesão Celular , Movimento Celular , Polaridade Celular , Proliferação de Células , Mapeamento Cromossômico , Citoesqueleto/metabolismo , Análise Mutacional de DNA , Displasia Ectodérmica/embriologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Masculino , Dermatoses do Couro Cabeludo/congênito , Dermatoses do Couro Cabeludo/embriologia , Dermatoses do Couro Cabeludo/genética , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
Exp Cell Res ; 319(15): 2384-94, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23830879

RESUMO

Rho GTPases are molecular switches that modulate multiple intracellular signaling processes by means of various effector proteins. As a result, Rho GTPase activities are tightly spatiotemporally regulated in order to ensure homeostasis within the cell. Though the roles of Rho GTPases during neural development have been well documented, their participation during neurodegeneration has been far less characterized. Herein we discuss our current knowledge of the role and function of Rho GTPases and regulators during neurodegeneration, and highlight their potential as targets for therapeutic intervention in common neurodegenerative disorders.


Assuntos
Regulação da Expressão Gênica , Neuritos/metabolismo , Doenças Neurodegenerativas/genética , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Regeneração Nervosa/fisiologia , Neuritos/patologia , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Neurogênese/genética , Traumatismos do Nervo Óptico/enzimologia , Traumatismos do Nervo Óptico/genética , Traumatismos dos Nervos Periféricos/enzimologia , Traumatismos dos Nervos Periféricos/genética , Proteínas rho de Ligação ao GTP/classificação , Proteínas rho de Ligação ao GTP/genética
11.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119783, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871226

RESUMO

Kinases are known to have kinase activity independent functions. To gain further insights into potential kinase-independent functions of SLK/STK2, we have developed a kinase-dead allele, SLKK63R using in vivo CRISPR/Cas technology. Our studies show that blastocysts homozygote for SLKK63R do not develop into viable mice. However, heterozygotes are viable and fertile with no overt phenotypes. Analyses of mouse embryonic fibroblasts show that expression of SLKK63R results in a 50% decrease in kinase activity in heterozygotes. In contrast to previous studies, our data show that SLK does not form homodimers and that the kinase defective allele does not act in a dominant negative fashion. Expression of SLKK63R leads to altered Rac1 and RhoA activity, increased stress fiber formation and delayed focal adhesion turnover. Our data support a previously observed role for SLK in cell migration and suggest that at least 50% kinase activity is sufficient for embryonic development.

12.
J Biol Chem ; 287(23): 19610-21, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22518840

RESUMO

The Rho family of small GTPases are membrane-associated molecular switches involved in the control of a wide range of cellular activities, including cell migration, adhesion, and proliferation. Cdc42 GTPase-activating protein (CdGAP) is a phosphoprotein showing GAP activity toward Rac1 and Cdc42. CdGAP activity is regulated in an adhesion-dependent manner and more recently, we have identified CdGAP as a novel molecular target in signaling and an essential component in the synergistic interaction between TGFß and Neu/ErbB-2 signaling pathways in breast cancer cells. In this study, we identified a small polybasic region (PBR) preceding the RhoGAP domain that mediates specific binding to negatively charged phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). In vitro reconstitution of membrane vesicles loaded with prenylated Rac1 demonstrates that the PBR is required for full activation of CdGAP in the presence of PI(3,4,5)P3. In fibroblast cells, the expression of CdGAP protein mutants lacking an intact PBR shows a significant reduced ability of the protein mutants to induce cell rounding or to mediate negative effects on cell spreading. Furthermore, an intact PBR is required for CdGAP to inactivate Rac1 signaling into cells, whereas it is not essential in an in vitro context. Altogether, these studies reveal that specific interaction between negatively charged phospholipid PI(3,4,5)P3 and the stretch of polybasic residues preceding the RhoGAP domain regulates CdGAP activity in vivo and is required for its cellular functions.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células COS , Adesão Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Humanos , Mutação , Fosfatos de Fosfatidilinositol/genética , Fosfoproteínas/genética , Estrutura Terciária de Proteína , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética
13.
Cell Rep ; 42(8): 112936, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37552602

RESUMO

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor ß (TGF-ß)-induced EMT transcriptional signature. CdGAP is positively regulated by TGF-ß signaling during EMT and interacts with the adaptor talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-ß-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-ß and integrin/talin signaling pathways.


Assuntos
Neoplasias da Mama , Fator de Crescimento Transformador beta , Humanos , Animais , Camundongos , Feminino , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Mama/patologia , Talina/metabolismo , Proteínas de Transporte , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Integrinas/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Metástase Neoplásica , Movimento Celular
14.
Cell Stem Cell ; 30(2): 188-206.e6, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640764

RESUMO

A central factor in the maintenance of tissue integrity is the response of stem cells to variations in the levels of niche signals. In the gut, intestinal stem cells (ISCs) depend on Wnt ligands for self-renewal and proliferation. Transient increases in Wnt signaling promote regeneration after injury or in inflammatory bowel diseases, whereas constitutive activation of this pathway leads to colorectal cancer. Here, we report that Discs large 1 (Dlg1), although dispensable for polarity and cellular turnover during intestinal homeostasis, is required for ISC survival in the context of increased Wnt signaling. RNA sequencing (RNA-seq) and genetic mouse models demonstrated that DLG1 regulates the cellular response to increased canonical Wnt ligands. This occurs via the transcriptional regulation of Arhgap31, a GTPase-activating protein that deactivates CDC42, an effector of the non-canonical Wnt pathway. These findings reveal a DLG1-ARHGAP31-CDC42 axis that is essential for the ISC response to increased niche Wnt signaling.


Assuntos
Mucosa Intestinal , Via de Sinalização Wnt , Animais , Camundongos , Proliferação de Células , Proteínas Ativadoras de GTPase/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Nicho de Células-Tronco , Células-Tronco , Via de Sinalização Wnt/genética
15.
Wiley Interdiscip Rev RNA ; 13(2): e1678, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34155820

RESUMO

Microexons are small sized (≤51 bp) exons which undergo extensive alternative splicing in neurons, microglia, embryonic stem cells, and cancer cells, giving rise to cell type specific protein isoforms. Due to their small sizes, microexons provide a unique challenge for the splicing machinery. They frequently lack exon splicer enhancers/repressors and require specialized neighboring trans-regulatory and cis-regulatory elements bound by RNA binding proteins (RBPs) for their inclusion. The functional consequences of including microexons within mRNAs have been extensively documented in the central nervous system (CNS) and aberrations in their inclusion have been observed to lead to abnormal processes. Despite the increasing evidence for microexons impacting cellular physiology within CNS, mechanistic details illustrating their functional importance in diseases of the CNS is still limited. In this review, we discuss the unique characteristics of microexons, and how RBPs participate in regulating their inclusion and exclusion during splicing. We consider recent findings of microexon alternative splicing and their implication for regulating the function of small GTPases in the context of the microglia, and we extrapolate these findings to what is known in neurons. We further discuss the emerging evidence for dysregulation of the Rho GTPase pathway in CNS diseases and the consequences contributed by the mis-splicing of microexons. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.


Assuntos
Doenças do Sistema Nervoso Central , Proteínas Monoméricas de Ligação ao GTP , Processamento Alternativo , Doenças do Sistema Nervoso Central/genética , Humanos , RNA , Splicing de RNA , Proteínas de Ligação a RNA
16.
Sci Rep ; 12(1): 18657, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333327

RESUMO

Rho GTPases are regulators of the actin cytoskeleton and their activity is modulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchanging factors (GEFs). Glomerular podocytes have numerous actin-based projections called foot processes and their alteration is characteristic of proteinuric kidney diseases. We reported previously that Rac1 hyperactivation in podocytes causes proteinuria and glomerulosclerosis in mice. However, which GAP and GEF modulate Rac1 activity in podocytes remains unknown. Here, using a proximity-based ligation assay, we identified CdGAP (ARHGAP31) and ß-PIX (ARHGEF7) as the major regulatory proteins interacting with Rac1 in human podocytes. CdGAP interacted with ß-PIX through its basic region, and upon EGF stimulation, they both translocated to the plasma membrane in podocytes. CdGAP-depleted podocytes had altered cell motility and increased basal Rac1 and Cdc42 activities. When stimulated with EGF, CdGAP-depleted podocytes showed impaired ß-PIX membrane-translocation and tyrosine phosphorylation, and reduced activities of Src kinase, focal adhesion kinase, and paxillin. Systemic and podocyte-specific CdGAP-knockout mice developed mild but significant proteinuria, which was exacerbated by Adriamycin. Collectively, these findings show that CdGAP contributes to maintain podocyte function and protect them from injury.


Assuntos
Podócitos , Humanos , Camundongos , Animais , Podócitos/metabolismo , Adesões Focais , Quinases da Família src/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteinúria/metabolismo , Camundongos Knockout
17.
Nat Commun ; 12(1): 4688, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344896

RESUMO

Internalization and intracellular trafficking of G protein-coupled receptors (GPCRs) play pivotal roles in cell responsiveness. Dysregulation in receptor trafficking can lead to aberrant signaling and cell behavior. Here, using an endosomal BRET-based assay in a high-throughput screen with the prototypical GPCR angiotensin II type 1 receptor (AT1R), we sought to identify receptor trafficking inhibitors from a library of ~115,000 small molecules. We identified a novel dual Ras and ARF6 inhibitor, which we named Rasarfin, that blocks agonist-mediated internalization of AT1R and other GPCRs. Rasarfin also potently inhibits agonist-induced ERK1/2 signaling by GPCRs, and MAPK and Akt signaling by EGFR, as well as prevents cancer cell proliferation. In silico modeling and in vitro studies reveal a unique binding modality of Rasarfin within the SOS-binding domain of Ras. Our findings unveil a class of dual small G protein inhibitors for receptor trafficking and signaling, useful for the inhibition of oncogenic cellular responses.


Assuntos
Fatores de Ribosilação do ADP/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas ras/antagonistas & inibidores , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Sítios de Ligação , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/química , Proteínas ras/metabolismo
18.
Commun Biol ; 4(1): 1042, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493786

RESUMO

High mortality of prostate cancer patients is primarily due to metastasis. Understanding the mechanisms controlling metastatic processes remains essential to develop novel therapies designed to prevent the progression from localized disease to metastasis. CdGAP plays important roles in the control of cell adhesion, migration, and proliferation, which are central to cancer progression. Here we show that elevated CdGAP expression is associated with early biochemical recurrence and bone metastasis in prostate cancer patients. Knockdown of CdGAP in metastatic castration-resistant prostate cancer (CRPC) PC-3 and 22Rv1 cells reduces cell motility, invasion, and proliferation while inducing apoptosis in CdGAP-depleted PC-3 cells. Conversely, overexpression of CdGAP in DU-145, 22Rv1, and LNCaP cells increases cell migration and invasion. Using global gene expression approaches, we found that CdGAP regulates the expression of genes involved in epithelial-to-mesenchymal transition, apoptosis and cell cycle progression. Subcutaneous injection of CdGAP-depleted PC-3 cells into mice shows a delayed tumor initiation and attenuated tumor growth. Orthotopic injection of CdGAP-depleted PC-3 cells reduces distant metastasic burden. Collectively, these findings support a pro-oncogenic role of CdGAP in prostate tumorigenesis and unveil CdGAP as a potential biomarker and target for prostate cancer treatments.


Assuntos
Apoptose , Ciclo Celular , Transição Epitelial-Mesenquimal , Metástase Neoplásica , Neoplasias da Próstata/patologia , Animais , Masculino , Camundongos , Camundongos Nus
19.
Biol Cell ; 101(2): 77-90, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18616430

RESUMO

BACKGROUND INFORMATION: Netrin-1 is a bi-functional cue that attracts or repels different classes of neurons during development. The netrin-1 receptor DCC (deleted in colorectal cancer) acts as a tyrosine kinase-associated receptor to mediate the attractive response towards netrin-1. The lipid raft-localized Src family kinase Fyn is required for DCC-mediated axon guidance. DCC functions are also dependent on lipid rafts, membrane microdomains corresponding to a low-density, detergent-resistant membrane fraction. However, it remains unclear how the association of DCC with lipid rafts controls netrin-1 signalling. RESULTS: DCC targeted to lipid rafts represented a minor proportion of total DCC inside the cell, but predominated on the cell surface of both IMR-32 human neuroblastoma cells and embryonic cortical neurons. Netrin-1 accumulated in lipid rafts, but had no effect on the targeting of DCC to that compartment, with DCC remaining on the cell surface in lipid rafts through 60 min post-treatment. However, DCC was able to interact with Fyn, both in the lipid rafts and soluble compartments isolated from embryonic E19 rat brains, whereas early downstream signalling components such as Nck-1, and total and active focal adhesion kinase were mainly localized to the non-lipid raft compartment. CONCLUSIONS: Together, these results suggest that DCC can be found in raft and non-raft portions of the plasma membrane, with early signalling events propagated by non-raft associated DCC.


Assuntos
Microdomínios da Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Receptor DCC , Humanos , Microdomínios da Membrana/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Neuroblastoma/genética , Neuroblastoma/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética
20.
Cancer Lett ; 483: 98-113, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32217106

RESUMO

Liver metastases remain a major cause of death from gastrointestinal tract cancers and other malignancies, such as breast and lung carcinomas. Understanding the underlying biology is essential for the design of effective therapies. We previously identified the chemokine CCL7 and its receptor CCR3 as critical mediators of invasion and metastasis in lung and colon carcinoma cells. Here we show that the CCL7/CCR3 axis regulates a late stage in invadopodia genesis namely, the targeting of MMP-9 to the invadopodia complex, thereby promoting invadopodia maturation and collagen degradation. We show that this process could be blocked by overexpression of a dominant negative RhoA in highly invasive cells, while a constitutively active RhoA upregulated invadopodia maturation in CCL7-silenced and poorly invasive and metastatic cells and also enhanced their metastatic potential in vivo, collectively, implicating RhoA activation in signaling downstream of CCL7. Blockade of the ERK or PI3K pathways by chemical inhibitors also inhibited invadopodia formation, but affected the initiation stage of invadopodia genesis. Our data implicate CCL7/CCR3 signaling in invadopodia maturation and suggest that chemokine signaling acts in concert with extracellular matrix-initiated signals to promote invasion and liver metastasis.


Assuntos
Carcinoma Pulmonar de Lewis/enzimologia , Movimento Celular , Quimiocina CCL7/metabolismo , Colágeno/metabolismo , Neoplasias do Colo/enzimologia , Neoplasias Hepáticas/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Podossomos/enzimologia , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Quimiocina CCL7/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Metaloproteinase 9 da Matriz/genética , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Podossomos/genética , Podossomos/patologia , Transporte Proteico , Proteólise , Receptores CCR3/genética , Receptores CCR3/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA