Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(3): 529-537, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36753752

RESUMO

In recent years, several efforts have been made to develop selective, sensitive, fast response, and miniaturized immunosensors with improved performance for the monitoring and screening of analytes in several matrices, significantly expanding the use of this technology in a broad range of applications. However, one of the main technical challenges in developing immunosensors is overcoming the complexity of binding antibodies (Abs) to the sensor surface. Most immobilizing approaches lead to a random orientation of Abs, resulting in lower binding site density and immunoaffinity. In this context, supramolecular chemistry has emerged as a suitable surface modification tool to achieve the preorganization of artificial receptors and to improve the functional properties of self-assembled monolayers. Herein, a supramolecular chemistry/nanotechnology-based platform was conceived to develop sensitive label-free electrochemical immunosensors, by using a resorcarene macrocycle as an artificial linker for the oriented antibody immobilization. To this aim, a water-soluble bifunctional resorc[4]arene architecture (RW) was rationally designed and synthesized to anchor gold-coated magnetic nanoparticles (Au@MNPs) and to maximize the amount of the active immobilized antibody (Ab) in the proper "end-on" orientation. The resulting supramolecular chemistry-modified nanoparticles, RW@Au@MNPs, were deposited onto graphite screen printed electrodes which were then employed to immobilize three different Abs. Furthermore, an immunosensor for atrazine (ATZ) analysis was realized and characterized by the differential pulse voltammetry technique to demonstrate the validity of the developed biosensing platform as a proof of concept for electrochemical immunosensors. The RW-based immunosensor improved AbATZ loading on Au@MNPs and sensitivity toward ATZ by almost 1.5 times compared to the random platform. Particularly, the electrochemical characterization of the developed immunosensor displays a linearity range toward ATZ within 0.05-1.5 ng/mL, a limit of detection of 0.011 ng/ml, and good reproducibility and stability. The immunosensor was tested by analyzing spiked fortified water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of ATZ in real matrices. Therefore, the results highlighted the successful application of the resorc[4]arene-based sensor design strategy for developing sensitive electrochemical immunosensors with improved analytical performance and simplifying the Ab immobilization procedure.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , Nanopartículas Metálicas , Ouro/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Anticorpos/química , Eletrodos , Nanopartículas Metálicas/química , Limite de Detecção
2.
Chemistry ; 29(62): e202302237, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565343

RESUMO

Natural products (NPs) are highly profitable pharmacological tools due to their chemical diversity and ability to modulate biological systems. Accessing new chemical entities while retaining the biological relevance of natural chemotypes is a fundamental goal in the design of novel bioactive compounds. Notably, NPs have played a crucial role in understanding Hedgehog (HH) signalling and its pharmacological modulation in anticancer therapy. However, HH antagonists developed so far have shown several limitations, thus growing interest in the design of second-generation HH inhibitors. Through smart manipulation of the NPs core-scaffold, unprecedented and intriguing architectures have been achieved following different design strategies. This study reports the rational design and synthesis of a first and second generation of anthraquinone-based hybrids by combining the rhein scaffold with variously substituted piperazine nuclei that are structurally similar to the active portion of known SMO antagonists, the main transducer of the HH pathway. A thorough functional and biological investigation identified RH2_2 and RH2_6 rhein-based hybrids as valuable candidates for HH inhibition through SMO antagonism, with the consequent suppression of HH-dependent tumour growth. These findings also corroborated the successful application of the NPs-based hybrid design strategy in the development of novel NP-based SMO antagonists.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor Smoothened/uso terapêutico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antraquinonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
3.
Foods ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36429250

RESUMO

In this study, the effect of several agronomical practices on the chemical composition of hemp inflorescences, a potential novel food that needs to be further studied, was observed. Here, the case study of inflorescences from Ferimon cultivars is discussed and submitted to different agronomical practices (irrigation and fertilizers) in different years, and the inflorescences harvested in different periods were analyzed by a multimethodological approach. Targeted and untargeted methodologies allowed cannabinoids, total phenolic content, metabolite profile and antioxidant activity to be determined. The biomass and inflorescence yields were also reported. The whole data set was submitted to ANOVA-simultaneous component analysis. The statistic results allowed us to observe that irrigation was responsible for the (-)-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) increment. THC, cannabichromene (CBC), cannabigerol (CBG), succinate, and fructose resulted as higher in full female flowering than in the period of seed maturity. On the other hand, nitrogen supplementation led to an increase of iso-leucine, valine, and threonine. The obtained results underlined both the potential food application of hemp inflorescences, due to the rich chemical profile, and the strong effect of agronomical practices, mainly irrigation and harvesting, on the qualitative and quantitative characteristics of its metabolite profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA