RESUMO
Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.
Assuntos
Arqueologia , Militares , Arqueologia/métodos , Europa (Continente) , Grécia , História Antiga , Humanos , GuerraRESUMO
The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51â kya, into the Americas, from where a relatively recent (<20â kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7â kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.
Assuntos
Genoma Mitocondrial , Andorinhas , África , Animais , Ásia , Feminino , Humanos , Filogeografia , Andorinhas/genéticaRESUMO
Nowadays, the coexistence between humans and domestic animals (especially dogs and cats) has become a common scenario of daily life. Consequently, during a forensic investigation in civil or criminal cases, the biological material from a domestic animal could be considered "evidence" by law enforcement agencies. Animal genomics offers an important contribution in attacks and episodes of property destruction or in a crime scene where the non-human biological material is linked to the victim or perpetrator. However, only a few animal genetics laboratories in the world are able to carry out a valid forensic analysis, adhering to standards and guidelines that ensure the admissibility of data before a court of law. Today, forensic sciences focus on animal genetics considering all domestic species through the analysis of STRs (short tandem repeats) and autosomal and mitochondrial DNA SNPs (single nucleotide polymorphisms). However, the application of these molecular markers to wildlife seems to have gradually gained a strong relevance, aiming to tackle illegal traffic, avoid the loss of biodiversity, and protect endangered species. The development of third-generation sequencing technologies has glimmered new possibilities by bringing "the laboratory into the field", with a reduction of both the enormous cost management of samples and the degradation of the biological material.
Assuntos
Doenças do Gato , Doenças do Cão , Animais , Gatos/genética , Cães , Animais Domésticos , Ciências Forenses , Repetições de Microssatélites/genética , GenômicaRESUMO
Sickle cell disease (SCD) is one of the most common severe monogenic disorders in the world caused by a mutation on HBB gene and characterized by hemoglobin polymerization, erythrocyte rigidity, vaso-occlusion, chronic anemia, hemolysis, and vasculopathy. Recently, the scientific community has focused on the multiple genetic and clinical profiles of SCD. However, the lipid composition of sickle cells has received little attention in the literature. According to recent studies, changes in the lipid profile are strongly linked to several disorders. Therefore, the aim of this study is to dig deeper into lipidomic analysis of erythrocytes in order to highlight any variations between healthy and patient subjects. 241 lipid molecular species divided into 17 classes have been annotated and quantified. Lipidomic profiling of SCD patients showed that over 24% of total lipids were altered most of which are phospholipids. In-depth study of significant changes in lipid metabolism can give an indication of the enzymes and genes involved. In a systems biology scenario, these variations can be useful to improve the understanding of the biochemical basis of SCD and to try to make a score system that could be predictive for the severity of clinical manifestations.
Assuntos
Anemia Falciforme , Doenças Vasculares , Humanos , Eritrócitos/metabolismo , Hemólise , Lipidômica , LipídeosRESUMO
The high number of matching haplotypes of the most common mitochondrial (mt)DNA lineages are considered to be the greatest limitation for forensic applications. This study investigates the potential to solve this constraint by massively parallel sequencing a large number of mitogenomes that share the most common West Eurasian mtDNA control region (CR) haplotype motif (263G 315.1C 16519C). We augmented a pilot study on 29 to a total of 216 Italian mitogenomes that represents the largest set of the most common CR haplotype compiled from a single country. The extended population sample confirmed and extended the huge coding region diversity behind the most common CR motif. Complete mitogenome sequencing allowed for the detection of 163 distinct haplotypes, raising the power of discrimination from 0 (CR) to 99.6% (mitogenome). The mtDNAs were clustered into 61 named clades of haplogroup H and did not reveal phylogeographic trends within Italy. Rapid individualization approaches for investigative purposes are limited to the most frequent H clades of the dataset, viz. H1, H3, and H7.
Assuntos
DNA Mitocondrial , Genoma Mitocondrial , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , Núcleo Familiar , Projetos Piloto , Análise de Sequência de DNARESUMO
BACKGROUND: During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. RESULTS: Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. CONCLUSIONS: This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.
Assuntos
Bovinos/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Distribuição Animal , Animais , Teorema de Bayes , Evolução Molecular , Frequência do GeneRESUMO
In this study we evaluated migration models to the Americas by using the information contained in native mitochondrial genomes (mitogenomes) from North America. Molecular and phylogeographic analyses of B2a mitogenomes, which are absent in Eskimo-Aleut and northern Na-Dene speakers, revealed that this haplogroup arose in North America â¼11-13 ka from one of the founder Paleo-Indian B2 mitogenomes. In contrast, haplogroup A2a, which is typical of Eskimo-Aleuts and Na-Dene, but also present in the easternmost Siberian groups, originated only 4-7 ka in Alaska, led to the first Paleo-Eskimo settlement of northern Canada and Greenland, and contributed to the formation of the Na-Dene gene pool. However, mitogenomes also show that Amerindians from northern North America, without any distinction between Na-Dene and non-Na-Dene, were heavily affected by an additional and distinctive Beringian genetic input. In conclusion, most mtDNA variation (along the double-continent) stems from the first wave from Beringia, which followed the Pacific coastal route. This was accompanied or followed by a second inland migratory event, marked by haplogroups X2a and C4c, which affected all Amerindian groups of Northern North America. Much later, the ancestral A2a carriers spread from Alaska, undertaking both a westward migration to Asia and an eastward expansion into the circumpolar regions of Canada. Thus, the first American founders left the greatest genetic mark but the original maternal makeup of North American Natives was subsequently reshaped by additional streams of gene flow and local population dynamics, making a three-wave view too simplistic.
Assuntos
Emigração e Imigração , Migração Humana , Indígenas Norte-Americanos/genética , Genoma Humano , HumanosRESUMO
BACKGROUND: The current extensive use of the domestic goat (Capra hircus) is the result of its medium size and high adaptability as multiple breeds. The extent to which its genetic variability was influenced by early domestication practices is largely unknown. A common standard by which to analyze maternally-inherited variability of livestock species is through complete sequencing of the entire mitogenome (mitochondrial DNA, mtDNA). RESULTS: We present the first extensive survey of goat mitogenomic variability based on 84 complete sequences selected from an initial collection of 758 samples that represent 60 different breeds of C. hircus, as well as its wild sister species, bezoar (Capra aegagrus) from Iran. Our phylogenetic analyses dated the most recent common ancestor of C. hircus to ~460,000 years (ka) ago and identified five distinctive domestic haplogroups (A, B1, C1a, D1 and G). More than 90 % of goats examined were in haplogroup A. These domestic lineages are predominantly nested within C. aegagrus branches, diverged concomitantly at the interface between the Epipaleolithic and early Neolithic periods, and underwent a dramatic expansion starting from ~12-10 ka ago. CONCLUSIONS: Domestic goat mitogenomes descended from a small number of founding haplotypes that underwent domestication after surviving the last glacial maximum in the Near Eastern refuges. All modern haplotypes A probably descended from a single (or at most a few closely related) female C. aegagrus. Zooarchaelogical data indicate that domestication first occurred in Southeastern Anatolia. Goats accompanying the first Neolithic migration waves into the Mediterranean were already characterized by two ancestral A and C variants. The ancient separation of the C branch (~130 ka ago) suggests a genetically distinct population that could have been involved in a second event of domestication. The novel diagnostic mutational motifs defined here, which distinguish wild and domestic haplogroups, could be used to understand phylogenetic relationships among modern breeds and ancient remains and to evaluate whether selection differentially affected mitochondrial genome variants during the development of economically important breeds.
Assuntos
Genoma Mitocondrial/genética , Cabras/genética , Animais , DNA Mitocondrial/genética , Feminino , Variação Genética/genética , Haplótipos/genética , Dados de Sequência Molecular , FilogeniaRESUMO
Mitochondrial DNA (mtDNA) lineages of macro-haplogroup L (excluding the derived L3 branches M and N) represent the majority of the typical sub-Saharan mtDNA variability. In Europe, these mtDNAs account for <1% of the total but, when analyzed at the level of control region, they show no signals of having evolved within the European continent, an observation that is compatible with a recent arrival from the African continent. To further evaluate this issue, we analyzed 69 mitochondrial genomes belonging to various L sublineages from a wide range of European populations. Phylogeographic analyses showed that ~65% of the European L lineages most likely arrived in rather recent historical times, including the Romanization period, the Arab conquest of the Iberian Peninsula and Sicily, and during the period of the Atlantic slave trade. However, the remaining 35% of L mtDNAs form European-specific subclades, revealing that there was gene flow from sub-Saharan Africa toward Europe as early as 11,000 yr ago.
Assuntos
DNA Mitocondrial/genética , África/etnologia , Emigração e Imigração/história , Europa (Continente) , Evolução Molecular , Haplótipos , História Antiga , Humanos , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Componente PrincipalRESUMO
It is now widely agreed that the Native American founders originated from a Beringian source population ~15-18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.
Assuntos
Emigração e Imigração/história , Genoma Mitocondrial , Indígenas Sul-Americanos/genética , Frequência do Gene , Haplótipos , História Antiga , Humanos , Indígenas Sul-Americanos/história , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , América do SulRESUMO
Archaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas. Our data reveal 18 major haplogroups (A-R) with radiation times that are mostly confined to the Neolithic and later periods and place the root of the phylogeny corresponding to the Ancestral Mare Mitogenome at ~130-160 thousand years ago. All haplogroups were detected in modern horses from Asia, but F was only found in E. przewalskii--the only remaining wild horse. Therefore, a wide range of matrilineal lineages from the extinct E. ferus underwent domestication in the Eurasian steppes during the Eneolithic period and were transmitted to modern E. caballus breeds. Importantly, now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to (i) classify well-preserved ancient remains, (ii) (re)assess the haplogroup variation of modern breeds, including Thoroughbreds, and (iii) evaluate the possible role of mtDNA backgrounds in racehorse performance.
Assuntos
Animais Domésticos/genética , DNA Mitocondrial/genética , Genoma , Haplótipos , Cavalos/genética , Animais , Cavalos/classificação , FilogeniaRESUMO
Pan-American mitochondrial DNA (mtDNA) haplogroup C1 has been recently subdivided into three branches, two of which (C1b and C1c) are characterized by ages and geographical distributions that are indicative of an early arrival from Beringia with Paleo-Indians. In contrast, the estimated ages of C1d--the third subset of C1--looked too young to fit the above scenario. To define the origin of this enigmatic C1 branch, we completely sequenced 63 C1d mitochondrial genomes from a wide range of geographically diverse, mixed, and indigenous American populations. The revised phylogeny not only brings the age of C1d within the range of that of its two sister clades, but reveals that there were two C1d founder genomes for Paleo-Indians. Thus, the recognized maternal founding lineages of Native Americans are at least 15, indicating that the overall number of Beringian or Asian founder mitochondrial genomes will probably increase extensively when all Native American haplogroups reach the same level of phylogenetic and genomic resolution as obtained here for C1d.
Assuntos
Genoma Mitocondrial/genética , Indígenas Norte-Americanos/genética , América , DNA Mitocondrial/genética , Emigração e Imigração , Variação Genética , Genoma Humano , Geografia , Haplótipos , Humanos , Dados de Sequência Molecular , FilogeniaRESUMO
Horse domestication and breed selection processes have profoundly influenced the development and transformation of human society and civilization over time. Therefore, their origin and history have always attracted much attention. In Italy, several local breeds have won prestigious awards thanks to their unique traits and socio-cultural peculiarities. Here, for the first time, we report the genetic variation of three loci of the male-specific region of the Y chromosome (MSY) of four local breeds and another one (Lipizzan, UNESCO) well-represented in the Italian Peninsula. The analysis also includes data from three Sardinian breeds and another forty-eight Eurasian and Mediterranean horse breeds retrieved from GenBank for comparison. Three haplotypes (HT1, HT2, and HT3) were found in Italian stallions, with different spatial distributions between breeds. HT1 (the ancestral haplotype) was frequent, especially in Bardigiano and Monterufolino, HT2 (Neapolitan/Oriental wave) was found in almost all local breeds, and HT3 (Thoroughbred wave) was detected in Maremmano and two Sardinian breeds (Sardinian Anglo-Arab and Sarcidano). This differential distribution is due to three paternal introgressions of imported stallions from foreign countries to improve local herds; however, further genetic analyses are essential to reconstruct the genetic history of native horse breeds, evaluate the impact of selection events, and enable conservation strategies.
Assuntos
Árabes , Bases de Dados de Ácidos Nucleicos , Humanos , Animais , Cavalos/genética , Masculino , Haplótipos , Itália , Cromossomo Y/genéticaRESUMO
The red swamp crayfish Procambarus clarkii is one of the most threatening freshwater species in the world. The aim of this study is to provide a better understanding of the phylogeography and the invasion routes of P. clarkii populations in the Italian Peninsula through the analysis of mitochondrial phylogeny. Mitochondrial control region and cytochrome c oxidase subunit I (COI) sequences of 153 samples collected from six Italian basins were analyzed and compared to worldwide data. Except for the lakes Bolsena and Posta Fibreno, a high genetic variability was found in the other basins. The mitochondrial DNA pattern of P. clarkii from the lakes Candia and Massaciuccoli confirmed the hypothesis of double introduction events. Another entry point could be represented by Lake Trasimeno, which shows haplotypes originating from Louisiana and not shared with other Italian basins. Moreover, unique lineages were also found in the Stella River, thus enhancing the hypothesis that multiple introductions of P. clarkii occurred in northern and Central Italy and strengthening the idea that knowledge about the dispersion routes of this alien species can be useful to predict its invasiveness and elaborate control strategies to preserve biodiversity.
RESUMO
The dog was probably the first domesticated animal. Despite extensive archaeological and genetic investigations, the origin and the evolution of the extant dogs are still being debated. Dog breeds that have over time been selected for hunting share common ancestral traits. This study represents the first comprehensive attempt to survey at the genomic and mitochondrial level eight hound-like dogs breeds indigenous to the Mediterranean Basin to determine if they share common ancient origins. Results from the microsatellite analysis indicate that all the dog populations have a low inbreeding value.The Kelb tal-Fenek has a high divergence from the current Egyptian street population, however there is not enough evidence from this study to exclude completely the potential of an ancient common relationship. Overall, the mitochondrial results indicate high frequencies of haplogroups A and B and a low representation of haplogroup C, while only one Egyptian dog could be assigned to haplogroup D. Results reveal identities and shared clades, suggesting the conservation of ancient European mitotypes in the Mediterranean hound-like breeds, especially in the Egyptian population. Although none of the dog populations/breeds participating in this study indicate to be direct descendants of the Egyptian dogs, they still have a very close morphologically resemblance to those iconic Egyptian dogs often depicted in ancient art forms and share some genetic links with the current Egyptian population. Further research is required with other markers such us complete mitogenomes and SNP panels to confirm the complex history of the Mediterranean dogs involved in this study.
Assuntos
DNA Mitocondrial , Variação Genética , Animais , Cães , Haplótipos , DNA Mitocondrial/genética , Filogeografia , Endogamia , FilogeniaRESUMO
There are extensive data indicating that some glacial refuge zones of southern Europe (Franco-Cantabria, Balkans, and Ukraine) were major genetic sources for the human recolonization of the continent at the beginning of the Holocene. Intriguingly, there is no genetic evidence that the refuge area located in the Italian Peninsula contributed to this process. Here we show, through phylogeographic analyses of mitochondrial DNA (mtDNA) variation performed at the highest level of molecular resolution (52 entire mitochondrial genomes), that the most likely homeland for U5b3-a haplogroup present at a very low frequency across Europe-was the Italian Peninsula. In contrast to mtDNA haplogroups that expanded from other refugia, the Holocene expansion of haplogroup U5b3 toward the North was restricted by the Alps and occurred only along the Mediterranean coasts, mainly toward nearby Provence (southern France). From there, approximately 7,000-9,000 years ago, a subclade of this haplogroup moved to Sardinia, possibly as a result of the obsidian trade that linked the two regions, leaving a distinctive signature in the modern people of the island. This scenario strikingly matches the age, distribution, and postulated geographic source of a Sardinian Y chromosome haplogroup (I2a2-M26), a paradigmatic case in the European context of a founder event marking both female and male lineages.
Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , Paleopatologia , Evolução Molecular , Feminino , Humanos , Itália , Masculino , Dados de Sequência Molecular , LinhagemRESUMO
European (Dermatophagoides pteronyssinus) and American (Dermatophagoides farinae) house dust mite species are considered the most common causes of asthma and allergic symptoms worldwide. Der p 1 protein, one of the main allergens of D. pteronyssinus, is found in high concentration in mites faecal pellets, which can became easily airborne and, when inhaled, can cause perennial rhinitis and bronchial asthma. Here we report the isolation of the Der p 1 gene from an Italian strain of D. pteronyssinus and the PVX-mediated expression of its mature form (I-rDer p 1) in Nicotiana benthamiana plants. Human sera from characterized allergic patients were used for IgE binding inhibition assays to test the immunological reactivity of I-rDer p 1 produced in N. benthamiana plants. The binding properties of in planta produced I-rDer p 1 versus the IgE of patients sera were comparable to those obtained on Der p 1 preparation immobilized on a microarray. In this paper we provide a proof of concept for the production of an immunologically active form of Der p 1 using a plant viral vector. These results pave the way for the development of diagnostic allergy tests based on in planta produced allergens.
Assuntos
Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes/metabolismo , Cisteína Endopeptidases/metabolismo , Nicotiana/metabolismo , Alérgenos/imunologia , Animais , Especificidade de Anticorpos , Antígenos de Dermatophagoides/genética , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Dermatophagoides farinae/imunologia , Dermatophagoides pteronyssinus/genética , Dermatophagoides pteronyssinus/imunologia , Eletroforese em Gel de Poliacrilamida , Fezes , Glicosilação , Humanos , Imunoglobulina E/imunologia , Imunoprecipitação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Análise Serial de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Rinite/sangue , Rinite/imunologia , Nicotiana/genética , Transcrição GênicaRESUMO
Recent analyses of mitochondrial genomes from Native Americans have brought the overall number of recognized maternal founding lineages from just four to a current count of 15. However, because of their relative low frequency, almost nothing is known for some of these lineages. This leaves a considerable void in understanding the events that led to the colonization of the Americas following the Last Glacial Maximum (LGM). In this study, we identified and completely sequenced 14 mitochondrial DNAs belonging to one extremely rare Native American lineage known as haplogroup C4c. Its age and geographical distribution raise the possibility that C4c marked the Paleo-Indian group(s) that entered North America from Beringia through the ice-free corridor between the Laurentide and Cordilleran ice sheets. The similarities in ages andgeographical distributions for C4c and the previously analyzed X2a lineage provide support to the scenario of a dual origin for Paleo-Indians. Taking into account that C4c is deeply rooted in the Asian portion of the mtDNA phylogeny and is indubitably of Asian origin, the finding that C4c and X2a are characterized by parallel genetic histories definitively dismisses the controversial hypothesis of an Atlantic glacial entry route into North America.
Assuntos
Povo Asiático/genética , DNA Mitocondrial/genética , Emigração e Imigração/história , Haplótipos/genética , Indígenas Norte-Americanos/genética , Canadá , Colômbia , Variação Genética/genética , Genética Populacional , História Antiga , Humanos , Filogenia , Análise de Sequência de DNA , Estados UnidosRESUMO
The present equine genetic variation mirrors the deep influence of intensive breeding programs during the last 200 years. Here, we provide a comprehensive current state of knowledge on the trends and prospects on the variation in the equine male-specific region of the Y chromosome (MSY), which was assembled for the first time in 2018. In comparison with the other 12 mammalian species, horses are now the most represented, with 56 documented MSY genes. However, in contrast to the high variability in mitochondrial DNA observed in many horse breeds from different geographic areas, modern horse populations demonstrate extremely low genetic Y-chromosome diversity. The selective pressures employed by breeders using pedigree data (which are not always error-free) as a predictive tool represent the main cause of this lack of variation in the Y-chromosome. Nevertheless, the detailed phylogenies obtained by recent fine-scaled Y-chromosomal genotyping in many horse breeds worldwide have contributed to addressing the genealogical, forensic, and population questions leading to the reappraisal of the Y-chromosome as a powerful genetic marker to avoid the loss of biodiversity as a result of selective breeding practices, and to better understand the historical development of horse breeds.
Assuntos
Seleção Artificial , Cromossomo Y , Cavalos/genética , Animais , Masculino , Cromossomo Y/genética , Filogenia , Linhagem , Polimorfismo de Nucleotídeo Único , Mamíferos/genéticaRESUMO
Sicily is one of the main islands of the Mediterranean Sea, and it is characterized by a variety of archaeological records, material culture and traditions, reflecting the history of migrations and populations' interaction since its first colonization, during the Paleolithic. These deep and complex demographic and cultural dynamics should have affected the genomic landscape of Sicily at different levels; however, the relative impact of these migrations on the genomic structure and differentiation within the island remains largely unknown. The available Sicilian modern genetic data gave a picture of the current genetic structure, but the paucity of ancient data did not allow so far to make predictions about the level of historical variation. In this work, we sequenced and analyzed the complete mitochondrial genomes of 36 individuals from five different locations in Sicily, spanning from Early Bronze Age to Iron Age, and with different cultural backgrounds. The comparison with coeval groups from the Mediterranean Basin highlighted structured genetic variation in Sicily since Early Bronze Age, thus supporting a demic impact of the cultural transitions within the Island. Explicit model testing through Approximate Bayesian Computation allowed us to make predictions about the origin of Sicanians, one of the three indigenous peoples of Sicily, whose foreign origin from Spain, historically attributed, was not confirmed by our analysis of genetic data. Sicilian modern mitochondrial data show a different, more homogeneous, genetic composition, calling for a recent genetic replacement in the Island of pre-Iron Age populations, that should be further investigated.